Skip to main content

Advertisement

Log in

Photocatalytic Degradation of Organic Pollutants in Wastewater

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Even today the efficient treatment of industrial wastewaters is not evident. The effluents may contain large amounts of harmful organic compounds that are not easily removed with conventional methods. This study focuses on the photocatalytic treatment of four organic pollutants originated from different types of industry. The pollutants are diuron (herbicide), p-coumaric acid (agro-industrial wastewater), bisphenol A and phthalic anhydride (plasticizers), which all are widely used and cause significant health and environmental problems. To get deeper understanding, the photocatalytic degradation of the model molecules was studied both in synthetic solutions and in industrial wastewater matrix over TiO2 P25 in two different batch photoreactors under UV-A irradiation. The effects of catalyst loading, pH and initial concentration were studied. To gain understanding on the reactivity of molecules and costs of treatment, the kinetic modelling and energy modelling were compared and the specific applied energy (ESAE) was estimated. ESAE is proposed as a useful value to estimate the energy needed to degrade one mole of pollutant and further to calculate the operating costs to treat the wastewater. Of the model pollutants, diuron was removed the most efficiently and its removal consumed the least amount of energy in terms of the specific applied energy. Bisphenol A was found to be the most difficult to be removed by photocatalysis. The industrial wastewater matrix affected negatively the removal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Koshy L, Paris E, Ling S, Jones T, Bérubé K (2007) Bioreactivity of leachate from municipal solid waste landfills—assessment of toxicity. Sci Total Environ 384:171–181

    Article  CAS  Google Scholar 

  2. Baderna D, Maggioni S, Boriani E, Gemma S, Molteni M, Lombardo A, Colombo A, Bordonali S, Rotella G, Lodi M, Benfenati E (2011) A combined approach to investigate the toxicity of an industrial landfill’s leachate: chemical analyses, risk assessment and in vitro assays. Environ Res 111:603–613

    Article  CAS  Google Scholar 

  3. Barba M, Mazza A, Guerriero C, Di Maio M, Romeo F, Maranta P, Marino IR, Paggi MG (2011) Wasting lives: the effects of toxic waste exposure on health. The case of Campania, Southern Italy. Cancer Biol Ther 15:106–111

    Article  Google Scholar 

  4. Mohapatra DP, Brar SK, Tyagi RD, Surampalli RY (2010) Physico-chemical pre-treatment and biotransformation of wastewater and wastewater Sludge—Fate of bisphenol A. Chemosphere 78:923–941

    Article  CAS  Google Scholar 

  5. Priac A, Morin-Crini N, Druart C, Gavoille S, Bradu C, Lagarrigue C, Torri G, Winterton P, Crini G (2014) Alkylphenol and alkylphenol polyethoxylates in water and wastewater: a review of options for their elimination. Arab J Chem. doi:10.1016/j.arabjc.2014.05.011

    Google Scholar 

  6. Munter R (2001) Advanced oxidation processes—current status and prospects. Proc Eston Acad Sci Chem 50:59–80

    CAS  Google Scholar 

  7. de Lasa H, Serrano B, Salaices M (2005) Photocatalytic Reaction Engineering. Springer, New York

    Book  Google Scholar 

  8. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  9. Gogate BR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    Article  CAS  Google Scholar 

  10. Hufschmidt D, Bahnemann D, Testa JJ, Emilio CA, Litter MI (2002) Enhancement of the photocatalytic activity of various TiO2 materials by platinisation. J Photochem Photobiol A 148:223–231

    Article  CAS  Google Scholar 

  11. Pirilä M, Lenkkeri R, Goldmann WM, Kordás K, Keiski RL (2013) Photocatalytic degradation of butanol in aqueous solutions by TiO2 nanofibers. Top Catal 56:630–636

    Article  Google Scholar 

  12. Kment S, Kmentova H, Kluson P, Krysa J, Hubicka Z, Cirkva V, Gregora I, Solcova O, Jastrabik L (2010) Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. J Colloid Interface Sci 348:198–205

    Article  CAS  Google Scholar 

  13. Wang RC, Zhu L, Song C, Shan G, Chen P (2011) Characterization of photocatalyst Bi3.84W0.16O6.24 and its photodegradation on bisphenol A under simulated solar light irradiation. Appl Catal B 105:229–236

    Article  CAS  Google Scholar 

  14. Menéndez-Flores VM, Bahnemann DW, Ohno T (2011) Visible light photocatalytic activities of S-doped TiO2-Fe3+ in aqueous and gas phase. Appl Catal B 103:99–108

    Article  Google Scholar 

  15. Wu MC, Sápi A, Avila A, Szabó M, Hiltunen J, Huuhtanen M, Tóth G, Kukovecz Á, Kónya Z, Keiski R, Su WF, Jantunen H, Kordás K (2011) Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res 4:360–369

    Article  CAS  Google Scholar 

  16. Rosas JM, Vicente F, Saguillo EG, Santos A, Romero A (2014) Remediation of soil polluted with herbicides by Fenton-like reaction: kinetic model of diuron degradation. Appl Catal B 144:252–260

    Article  CAS  Google Scholar 

  17. European Commission Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union L 226:1–17

  18. Nm Vieno, Harkki H, Tuhkanen T, Kronberg L (2007) Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ Sci Technol 41:5077–5084

    Article  Google Scholar 

  19. Vilttanen S (2010) UVC irradiation based water treatment. Academic dissertation, Universty of Eastern Finland

  20. Wintgens T, Salehi F, Hochstrat R, Melin T (2008) Emerging contaminants and treatment options in water recycling for indirect potable use. Water Sci Technol 57:99–107

    Article  CAS  Google Scholar 

  21. Pham Minh, Gallezot D, Azabou S, Sayadi S, Besson M (2008) Catalytic wet air oxidation of olive oil mill effluents: treatment and detoxification of real effluents. ApplCatal B 84:749–757

    Article  Google Scholar 

  22. Mantzavinos D, Hellenbrand R, Livingston AG, Metcalfe IS (1996) Catalytic wet oxidation of p-coumaric acid: partial oxidation intermediates, reaction pathways and catalyst leaching. Appl Catal B 7:379–396

    Article  CAS  Google Scholar 

  23. Baransi K, Dubowski Y, Sabbah I (2012) Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater. Water Res 46:789–798

    Article  CAS  Google Scholar 

  24. Sin JC, Lam SM, Mohamed AR, Lee KT (2011) Degrading endocrine disrupting chemicals from wastewater by TiO2 photocatalysis: a review. Int J Photoenergy. doi:10.1155/2012/185159

    Google Scholar 

  25. U.S. EPA (7407) (1994) Pollution Prevention and Toxics. OPPT Chemical Fact Sheets: Phthalic Anhydride. 749-F-95-016. http://www.epa.gov/chemfact/phtha-fs.txt. Accessed 1 June 2014

  26. Miyakoda H, Tabata M, Onodera S, Takeda K (2000) Comparison of conjugative activity, conversion of bisphenol A to bisphenol A glucuronide, in fetal and mature male rat. J Health Sci 46:269–274

    Article  CAS  Google Scholar 

  27. Chiang K, Lim TM, Tsen L, Lee CC (2004) Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinised TiO2. Appl Catal A 261:225–237

    Article  CAS  Google Scholar 

  28. Jia C, Wang Y, Zhang C, Qin Q, Kong S, Yao SK (2012) Photocatalytic degradation of bisphenol A in aqueous suspensions of Titanium Dioxide. Environ Eng Sci 29:630–637

    Article  CAS  Google Scholar 

  29. Selvaraj KK, Shanmugam G, Sampath S, Larsson JDG, Ramaswamy BR (2014) GC–MS determination of bisphenol A and alkylphenol ethoxylates in river water from India and their ecotoxicological risk assessment. Ecotoxicol Environ Saf 99:13–20

    Article  CAS  Google Scholar 

  30. Wang RC, Ren DJ, Xia SQ, Zhang YL, Zhao JF (2009) Photocatalytic degradation of bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J Hazard Mater 169:926–932

    Article  CAS  Google Scholar 

  31. Wang C, Li J, Mele G, Yang GM, Zhang FX, Palmisano L, Vasapollo G (2007) Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Appl Catal B 76:218–226

    Article  CAS  Google Scholar 

  32. El-Sharkawy EA, Soliman AY, Al-Amer KM (2007) Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation. J Colloid Interface Sci 310:498–508

    Article  CAS  Google Scholar 

  33. Saquib M, Muneer M (2003) TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gential violet), in aqueous solutions. Dyes Pigments 56:37–49

    Article  CAS  Google Scholar 

  34. Herrmann JM, Guillard C (2000) Photocatalytic degradation of pesticides in agricultural used waters, CR Acad Sci Paris, Seriellc, Chimie. Chemistry 3(23):417–422

    CAS  Google Scholar 

  35. Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330

    Article  CAS  Google Scholar 

  36. Herrmann JM, Duchamp C, Karkmaz M, Bui TH, Lachheb H, Puzenat E, Guillard C (2007) Environmental green chemistry as defined by photocatalysis. J Hazard Mater 14:624–629

    Article  Google Scholar 

  37. Staples CA, Dom PB, Klecka GM, Oblook ST, Harris LR (1998) A Review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  38. Weast RC (ed) (1978) CRC Handbook of chemistry and physics, 58th edn. CRC Press, West Balm Beach

    Google Scholar 

  39. Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032

    Article  CAS  Google Scholar 

  40. Lair A, Ferronato C, Chovelon JM, Herrmann JM (2008) Naphthalene degradation in water by heterogeneous photocatalysis : an investigation of the influence of inorganic anions. J Photochem Photobiol A 193:193–203

    Article  CAS  Google Scholar 

  41. Du E, Zhan YX, Zhen L (2009) Photocatalytic degradation of dimethyl phthalate in aqueous TiO2 suspension: a modified Langmuir-Hinshelwood model. React Kinet Catal Lett 97:83–90

    Article  CAS  Google Scholar 

  42. Emeline AV, Ryabchuk VK, Serpone N (2005) Dogmas and misconceptions in heterogeneous photocatalysis. Some Enlightened Reflections. J Phys Chem B 109:18515–18521

    Article  CAS  Google Scholar 

  43. Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems. Pure Appl Chem 73:627–637

    Article  CAS  Google Scholar 

  44. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B Environ 39:75–90

    Article  CAS  Google Scholar 

  45. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  46. Tsai WT, Lee MK, Su TY, Chang YM (2009) Photo degradation of bisphenol-A in a batch TiO2 suspension reactor. J Hazard Mater 168:269–275

    Article  CAS  Google Scholar 

  47. Bahnemann W, Muneer M, Haque MM (2007) Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal Today 124:133–148

    Article  CAS  Google Scholar 

  48. Daskalaki VM, Frontistis Z, Mantzavinos D, Katsaounis A (2011) Solar light-induced degradation of bisphenol-A with TiO2 immobilized on Ti. Catal Today 161:110–114

    Article  CAS  Google Scholar 

  49. Del Olmo M, Zafra A, Gonzalex-Casado A, Vilchez JL (2006) The use of β-cyclodexterin inclusion complexes for the analysis of Bisphenol A residues in waster by spectrofluorometry. Int J Environ Anal Chem 69:99–110

    Article  Google Scholar 

  50. Leenders EJM (2008) Proton transfer in the photocycle of the photoactive yellow protein. PhD thesis, University of Amsterdam, Amsterdam

  51. Morrison RT, Boyd RN (1987) Organic chemistry. Allyn and Bacon Inc., Newton, p 846

    Google Scholar 

  52. Herrmann JM, Guillard C, Pichat P (1993) Heterogeneous photocatalysis: an emerging technology for water treatment. Catal Today 17:7–20

    Article  CAS  Google Scholar 

  53. Wei L, Shifu C, Wei Z, Sujuan Z (2009) Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. J Hazard Mater 164:154–160

    Article  CAS  Google Scholar 

  54. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31:145–157

    Article  CAS  Google Scholar 

  55. Subagio DP, Srinivasan M, Lim M, Lim TT (2010) Photocatalytic degradation of bisphenol A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Appl Catal B 95:414–422

    Article  CAS  Google Scholar 

  56. Parra S, Stanca SE, Guasaquillo I, Thampi KR (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B 51:107–116

    Article  CAS  Google Scholar 

  57. Herrmann JM (1999) Heterogeneous photocatalysis fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    Article  CAS  Google Scholar 

  58. Poulios I, Kyriacou (2002) Photocatalytic degradation of p-coumaric acid over TiO2 suspensions. Environ Technol 23:179–187

    Article  CAS  Google Scholar 

  59. Gandhi VG, Mishra MK, Rao MS, Kumar A, Joshi PA, Shah DO (2011) Comparative study on nano-crystalline titanium dioxide catalyzed photocatalytic degradation of aromatic carboxylic acids in aqueous medium. J Ind Eng Chem 17:331–339

    Article  CAS  Google Scholar 

  60. Malato S, Caseres J, Fernandez-Albas AR, Pieddra MD, Hernando MD, Aguera A, Vial J (2003) Photocatalytic treatment of diuron by solar photocatalysis: evaluation of main intermediates and toxicity. Environ Sci Technol 37:2416–2525

    Article  Google Scholar 

  61. Macounova K, Krysova H, Ludvik J (2003) Kinetic of photocatlytic degradation of diuron in aqueous colloidal solutions of Q-TiO2 particles. J Photochem Photobiol A 156:273–282

    Article  CAS  Google Scholar 

  62. Eurostat (2014) Electricity and natural gas price statistics http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Electricity_and_natural_gas_price_statistics#Electricity_prices_for_industrial_consumers. Accessed 13 June 2014

  63. Mohapatra DP, Brar SK, Tyagi RD, Surampalli RY (2011) Occurence of Bisphenol A in wastewater and wastewater sludge of CUQ treatment plant. J Xenobiot. doi:10.4081/xeno.2011.e3

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Academy of Finland [AOPI project (263580) from AKVA Programme] and the Finnish Funding Agency for Technology and Innovation, Tekes, [HYMEPRO (40262/11) and ImPhoNa (40238/11) projects] for financial support. The manufacturer of active pharmaceutical ingredients is acknowledged for providing the industrial wastewater for the experiments. In addition, Finnish Doctoral Programme in Environmental Science and Technology (EnSTe), is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Pirilä.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirilä, M., Saouabe, M., Ojala, S. et al. Photocatalytic Degradation of Organic Pollutants in Wastewater. Top Catal 58, 1085–1099 (2015). https://doi.org/10.1007/s11244-015-0477-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0477-7

Keywords

Navigation