Skip to main content

Advertisement

Log in

Anisole Hydrodeoxygenation: A Comparative Study of Ni/TiO2-ZrO2 and Commercial TiO2 Supported Ni and NiRu Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This work aimed to determine the carrier effect on anisole hydrodeoxygenation (HDO, batch reactor at 573 K, and 4 MPa of H2) on 5 wt% Ni catalysts on TiO2 and TiO2-ZrO2 carriers. Besides, a TiO2-supported Ru-doped catalyst was also tested. Differences in surface acid sites, Ni reducibility, oxygen vacancies, and interactions among metals and support were detected. For instance, Ru addition promoted Ni reducibility due to improved hydrogen adsorption and subsequent spillover effect. Methoxycyclohexane and cyclohexanol were the main products over Ni/TiO2. Ru incorporation increased the initial reaction rate (×3) compared with non-doped Ni/TiO2 favoring benzene selectivity. Ni/TiO2-ZrO2 exhibited higher HDO activity and enhanced acidity than the material supported on TiO2, and high deoxygenated compounds yield a fully hydrogenated compound (cyclohexane) as well. Therefore, it was possible to promote the desired reaction pathway to relevant chemical compounds that are associated with both the support type and the metallic phase composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim S, Kwon EE, Kim YT, Jung S, Kim HJ, Huber GW, Lee J (2019) Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem 21:3715–3743. https://doi.org/10.1039/c9gc01210a

    Article  CAS  Google Scholar 

  2. Patel M, Kumar A (2016) Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review. Renew Sustain Energy Rev 58:1293–1307. https://doi.org/10.1016/J.RSER.2015.12.146

    Article  CAS  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  CAS  PubMed  Google Scholar 

  4. Saidi M, Samimi F, Karimipourfard D, Nimmanwudipong T, Gates BC, Rahimpour MR (2014) Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ Sci 7:103–129. https://doi.org/10.1039/c3ee43081b

    Article  CAS  Google Scholar 

  5. Jin W, Pastor-Pérez L, Shen D, Sepúlveda-Escribano A, Gu S, Ramirez Reina T (2019) Catalytic upgrading of biomass model compounds: Novel approaches and lessons learnt from traditional hydrodeoxygenation - a Review. ChemCatChem 11:924–960. https://doi.org/10.1002/cctc.201801722

    Article  CAS  Google Scholar 

  6. Valdés-Martínez OU, Díaz de León JN, Santolalla CE, Talavera-López A, Avila-Paredes H, De Los Reyes JA (2021) Fundamental study of catalytic functionalities involved in effective C-O cleavage over Ru-supported catalysts. Ind Eng Chem Res 60:18880–18890. https://doi.org/10.1021/acs.iecr.1c03058

    Article  CAS  Google Scholar 

  7. Teles CA, Rabelo-Neto RC, Jacobs G, Davis BH, Resasco DE, Noronha FB (2017) Hydrodeoxygenation of phenol over zirconia-supported catalysts: The effect of metal type on reaction mechanism and catalyst deactivation. ChemCatChem 9:2850–2863. https://doi.org/10.1002/cctc.201700047

    Article  CAS  Google Scholar 

  8. de Souza PM, Rabelo-Neto RC, Borges LEP, Jacobs G, Davis BH, Resasco DE, Noronha FB (2017) Hydrodeoxygenation of phenol over Pd catalysts. Effect of support on reaction mechanism and catalyst deactivation. ACS Catal 7:2058–2073. https://doi.org/10.1021/acscatal.6b02022

    Article  CAS  Google Scholar 

  9. Phan TN, Park Y-K, Lee I-G (2017) Enhancement of CO bond cleavage to afford aromatics in the HDO of anisole over ruthenium-supporting mesoporous metal oxides. Appl Catal A Gen 544:84–93. https://doi.org/10.1016/J.APCATA.2017.06.029

    Article  CAS  Google Scholar 

  10. Reddy EP, Rojas TC, Fernández A, Chowdhury B, Reddy BM (2000) Transmission electron microscopy and energy-dispersive X-ray spectroscopy study of V2O5/TiO2-ZrO2 catalyst. Langmuir 16:4217–4221. https://doi.org/10.1021/la9912545

    Article  CAS  Google Scholar 

  11. Barrera MC, Viniegra M, Escobar J, Vrinat M, De Los Reyes JA, Murrieta F, García J (2004) Highly active MoS2 on wide-pore ZrO2-TiO2 mixed oxides. Catal Today 98:131–139. https://doi.org/10.1016/j.cattod.2004.07.027

    Article  CAS  Google Scholar 

  12. Ardiyanti AR, Gutierrez A, Honkela ML, Krause AOI, Heeres HJ (2011) Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts. Appl Catal A Gen 407:56–66. https://doi.org/10.1016/J.APCATA.2011.08.024

    Article  CAS  Google Scholar 

  13. Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48:10324–10334. https://doi.org/10.1021/ie9006003

    Article  CAS  Google Scholar 

  14. Granados Fócil AA, Granados Fócil S, Conde Sotelo VM, Grimm RL, González García F, Rojas Santiago E, Santolalla Vargas CE, Vera Ramírez MA, De los Reyes JA (2019) Development of bifunctional hydrodeoxygenation catalyst Rh-HY for the generation of biomass-derived high-energy-density fuels. Energy Technol 7:117. https://doi.org/10.1002/ente.201801112

    Article  CAS  Google Scholar 

  15. Mortensen PM, Grunwaldt J-D, Jensen PA, Jensen AD (2013) Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil. ACS Catal 3:1774–1785. https://doi.org/10.1021/cs400266e

    Article  CAS  Google Scholar 

  16. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098. https://doi.org/10.1039/c2cs35188a

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Tang W, Zhang Q, Wang T, Ma L (2018) Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. Appl Energy 227:73–79. https://doi.org/10.1016/j.apenergy.2017.08.078

    Article  CAS  Google Scholar 

  18. Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal 4:1574–1583. https://doi.org/10.1021/cs401199f

    Article  CAS  Google Scholar 

  19. Li R, Qiu J, Chen H, Shu R, Chen Y, Liu Y, Liu PF (2020) Hydrodeoxygenation of phenolic compounds and raw lignin-oil over bimetallic RuNi catalyst: An experimental and modeling study focusing on adsorption properties. Fuel 281:118758. https://doi.org/10.1016/j.fuel.2020.118758

    Article  CAS  Google Scholar 

  20. Valdés-Martínez OU, Suárez-Toriello VA, De los Reyes JA, Pawelec B, Fierro JLG (2017) Support effect and metals interactions for NiRu/Al2O3, TiO2 and ZrO2 catalysts in the hydrodeoxygenation of phenol. Catal Today 296:219–227. https://doi.org/10.1016/J.CATTOD.2017.04.007

    Article  Google Scholar 

  21. Zuliani A, Kikhtyanin O, Cova CM, Rodriguez-Padron D, Kubička D, Luque R (2022) Boosting the Ni-Catalyzed Hydrodeoxygenation HDO of Anisole Using Scrap Catalytic converters. Adv Sustain Syst 6:2100394. https://doi.org/10.1002/adsu.202100394

    Article  CAS  Google Scholar 

  22. Zhu X, Lobban LL, Mallinson RG, Resasco DE (2011) Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J Catal 281:21–29. https://doi.org/10.1016/j.jcat.2011.03.030

    Article  CAS  Google Scholar 

  23. Agrawal K, Kishore N (2019) Computational Study on Kinetics of Conversion of Bio-oil Model Compound-Anisole, to Platform Chemicals. J Phys Conf Ser 1276:012071. https://doi.org/10.1088/1742-6596/1276/1/012071

    Article  CAS  Google Scholar 

  24. Prabhudesai VS, Gurrala L, Vinu R (2022) Catalytic Hydrodeoxygenation of Lignin-Derived Oxygenates: Catalysis, Mechanism, and Effect of Process Conditions. Energy Fuels 36:1155–1188. https://doi.org/10.1021/acs.energyfuels.1c02640

    Article  CAS  Google Scholar 

  25. Escobar J, Núñez S, Montesinos-Castellanos A, De los Reyes JA, Rodríguez Y, González OA (2016) Dibenzothiophene hydrodesulfurization over PdPt/Al2O3-TiO2. Influence of Ti-addition on hydrogenating properties. Mater Chem Phys 171:185–194. https://doi.org/10.1016/j.matchemphys.2016.01.004

    Article  CAS  Google Scholar 

  26. Vázquez-Fuentes LF, Cortés-Jacome MA, López-Salinas E, Valente JS, Gil PM, Hernández-Cortez JG, Toledo-Antonio JA (2020) Selective vanillin hydrodeoxygenation on synthetic takovite derived NiAlOx mixed oxide. Top Catal 63:428–436. https://doi.org/10.1007/s11244-020-01261-8

    Article  CAS  Google Scholar 

  27. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219. https://doi.org/10.1016/S0920-5861(98)00050-9

    Article  CAS  Google Scholar 

  28. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

  29. Porter JF, Li YG, Chan CK (1999) Effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. J Mater Sci 34:1523–1531. https://doi.org/10.1023/A:1004560129347

    Article  CAS  Google Scholar 

  30. Nawi MA, Zain SM (2012) Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution. Appl Surf Sci 258:6148–6157. https://doi.org/10.1016/j.apsusc.2012.03.024

    Article  CAS  Google Scholar 

  31. García-Mendoza C, Santolalla-Vargas CE, Woolfolk LG, del Ángel P, De los Reyes JA (2020) Effect of TiO2 in supported NiWS catalysts for the hydrodeoxygenation of guaiacol. Catal Today 377:145–156. https://doi.org/10.1016/j.cattod.2020.08.026

    Article  CAS  Google Scholar 

  32. Lee H, Kim H, Yu MJ, Ko CH, Jeon J-K, Jae J, Park SH, Jung S-C, Park Y-K (2016) Catalytic hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Sci Rep 6:28765. https://doi.org/10.1038/srep28765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Zhu S, Wang S, He Y, Liu Y, Wang J, Fan W, Lv Y (2019) Low temperature hydrodeoxygenation of guaiacol into cyclohexane over Ni/SiO2 catalyst combined with Hβ zeolite. RSC Adv 9:3868–3876. https://doi.org/10.1039/c8ra09972c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang F, Zhang S, Li C, Liu J, He S, Zhao Y, Yan H, Wei M, Evans DG, Duan X (2014) Catalytic behavior of supported Ru nanoparticles on the (101) and (001) facets of anatase TiO2. RSC Adv 4:10834. https://doi.org/10.1039/c3ra47076h

    Article  CAS  Google Scholar 

  35. Tada S, Minori D, Otsuka F, Kikuchi R, Osada K, Akiyama K, Satokawa S (2014) Effect of Ru and Ni ratio on selective CO methanation over Ru–Ni/TiO2. Fuel 129:219–224. https://doi.org/10.1016/J.FUEL.2014.03.069

    Article  CAS  Google Scholar 

  36. Gaur LK, Kumar P, Kushavah D, Khiangte KR, Mathpal MC, Agrahari V, Gairola SP, Soler MAG, Swart HC, Agarwal A (2019) Laser induced phase transformation influenced by Co doping in TiO2 nanoparticles. J Alloys Compd 780:25–34. https://doi.org/10.1016/j.jallcom.2018.11.344

    Article  CAS  Google Scholar 

  37. Abdel-Baset TA, Bashal AH (2020) Structure and AC conductivity of zinc and nickel-doped TiO2 nanocomposite synthesized by simple incipient wet impregnation method. J Mater Sci Mater Electron 31:18533–18540. https://doi.org/10.1007/s10854-020-04397-1

    Article  CAS  Google Scholar 

  38. Strunk J, Vining WC, Bell AT (2010) A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48. J Phys Chem C 144:16937–16945. https://doi.org/10.1021/jp100104d

    Article  CAS  Google Scholar 

  39. Idakiev V, Ilieva L, Andreeva D, Blin JL, Gigot L, Su BL (2003) Complete benzene oxidation over gold-vanadia catalysts supported on nanostructured mesoporous titania and zirconia. Appl Catal A Gen 243:25–39. https://doi.org/10.1016/S0926-860X(02)00534-3

    Article  CAS  Google Scholar 

  40. Louis C, Cheng ZX, Che M (1993) Characterization of Ni/SiO2 catalysts during impregnation and further thermal activation treatment leading to metal particles. J Phys Chem 97:5703–5712. https://doi.org/10.1021/j100123a040

    Article  CAS  Google Scholar 

  41. Santolalla-Vargas CE, Suárez Toriello VA, De los Reyes JA, Cromwell DK, Pawelec B, Fierro JLG (2015) Effects of pH and chelating agent on the NiWS phase formation in NiW/γ-Al2O3 HDS catalysts. Mater Chem Phys 166:105–115. https://doi.org/10.1016/j.matchemphys.2015.09.033

    Article  CAS  Google Scholar 

  42. Rynkowski JM, Paryjczak T, Lenik M (1995) Characterization of alumina supported nickel-ruthenium systems. Appl Catal A Gen 126:257–271. https://doi.org/10.1016/0926-860X(95)00035-6

    Article  CAS  Google Scholar 

  43. Tanabe K, Takashi S, Katseu S, Kiyoura T, Kitagawa J (1974) A new hypothesis regarding the surface acidity of binary metal oxides. Bull Chem Soc Jpn 47:1064–1066

    Article  CAS  Google Scholar 

  44. Reddy BM, Khan A (2005) Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports. Catal Rev-Sci Eng 47:257–296. https://doi.org/10.1081/CR-200057488

    Article  CAS  Google Scholar 

  45. Li K-T, Wang I, Wu J-C (2012) Surface and catalytic properties of TiO2-ZrO2 mixed oxides. Catal Surv from Asia 16:240–248. https://doi.org/10.1007/s10563-012-9147-y

    Article  CAS  Google Scholar 

  46. Jiang X, Manawan M, Feng T, Qian R, Zhao T, Zhou G, Kong F, Wang Q, Dai S, Pan JH (2018) Anatase and rutile in evonik aeroxide P25: Heterojunctioned or individual nanoparticles? Catal Today 300:12–17. https://doi.org/10.1016/j.cattod.2017.06.010

    Article  CAS  Google Scholar 

  47. Xu M, He S, Chen H, Cui G, Zheng L, Wang B, Wei M (2017) TiO2 – x-Modified Ni Nanocatalyst with Tunable Metal-Support Interaction for Water-Gas Shift Reaction. ACS Catal 7:7600–7609. https://doi.org/10.1021/acscatal.7b01951

    Article  CAS  Google Scholar 

  48. Escobar J, De Los Reyes JA, Viveros T (2003) Nickel on TiO2-modified Al2O3 sol-gel oxides. Effect of synthesis parameters on the supported phase properties. Appl Catal A Gen 253:151–163. https://doi.org/10.1016/S0926-860X(03)00501-5

    Article  CAS  Google Scholar 

  49. Lu CM, Lin YM, Wang I (2000) Naphthalene hydrogenation over Pt/TiO2-ZrO2 and the behavior of strong metal-support interaction (SMSI). Appl Catal A Gen 198:223–234. 

    Article  CAS  Google Scholar 

  50. Lu M, Du H, Wei B, Zhu J, Li M, Shan Y, Shen J, Song C (2017) Hydrodeoxygenation of Guaiacol on Ru Catalysts: Influence of TiO2 – ZrO2 Composite Oxide Supports. Ind Eng Chem Res 56:12070–12079. https://doi.org/10.1021/acs.iecr.7b02569

    Article  CAS  Google Scholar 

  51. VanHardeveld R, Van Montfoort A (1966) The influence of crystallite size on the adsorption of molecular nitrogen on nickel, palladium and platinum. An infrared and electro-microscopic study. Surf Sci 4:396–430

    Article  CAS  Google Scholar 

  52. Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS (2006) New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 600:1771–1779. https://doi.org/10.1016/j.susc.2006.01.041

    Article  CAS  Google Scholar 

  53. Díaz de León JN, Picquart M, Massin L, Vrinat M, De los Reyes JA (2012) Hydrodesulfurization of sulfur refractory compounds: Effect of gallium as an additive in NiWS/γ-Al2O3 catalysts. J Mol Catal A Chem 363–364:311–321. https://doi.org/10.1016/j.molcata.2012.07.006

    Article  CAS  Google Scholar 

  54. Morgan DJ (2015) Resolving ruthenium: XPS studies of common ruthenium materials. Surf Interface Anal 47:1072–1079. https://doi.org/10.1002/sia.5852

    Article  CAS  Google Scholar 

  55. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898. https://doi.org/10.1016/J.APSUSC.2010.07.086

    Article  CAS  Google Scholar 

  56. Okasaki Y, Tateishi T, Ito Y (1997) Corrosion Resistance of implant alloys in Pseudo Physiological Solution and Role of Alloying Elements in Passive Films. Mater Trans JIM 38:78–84

    Article  Google Scholar 

  57. Phan TN, Park Y-K, Lee I-G, Ko CH (2017) Enhancement of CO bond cleavage to afford aromatics in the hydrodeoxygenation of anisole over ruthenium-supporting mesoporous metal oxides. Appl Catal A Gen 544:84–93. https://doi.org/10.1016/J.APCATA.2017.06.029

    Article  CAS  Google Scholar 

  58. Morales-Hernández G, Pacheco-Sosa JG, Escobar-Aguilar J, Torres-Torres JG, Pérez-Vidal H, Lunagómez-Rocha MA, del Ángel P (2020) Improving platinum dispersion on SBA-15 by titania addition. Rev Mex Ing Química 19:997–1010. https://doi.org/10.24275/rmiq/Mat821

  59. Van De Loosdrecht J, Van Der Kraan AM, Van Dillen AJ, Geus JW (1997) Metal-support interaction: Titania-supported and silica-supported nickel catalysts. J Catal 170:217–226. https://doi.org/10.1006/jcat.1997.1741

    Article  Google Scholar 

  60. Vargas-Villagrán H, Flores-Villeda MA, Puente-Lee I, Solís-Casados DA, Gómez-Cortés A, Díaz-Guerrero G, Klimova TE (2018) Supported nickel catalysts for anisole hydrodeoxygenation: Increase in the selectivity to cyclohexane. Catal Today 349:26–41. https://doi.org/10.1016/j.cattod.2018.07.057

    Article  CAS  Google Scholar 

  61. Yang Y, Hao J, Lv G (2019) Comparative study of catalytic hydrodeoxygenation performance over SBA-15 and TiO2 supported 20 wt% Ni for bio-oil upgrading. Fuel 253:630–636. https://doi.org/10.1016/j.fuel.2019.05.060

    Article  CAS  Google Scholar 

  62. Yang Y, Ochoa-Hernández C, de la Peña O’Shea VA, Pizarro P, Coronado JM, Serrano DP (2014) Effect of metal-support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts. Appl Catal B Environ 145:91–100. https://doi.org/10.1016/j.apcatb.2013.03.038

    Article  CAS  Google Scholar 

  63. Feliczak-Guzik A, Szczyglewska P, Jaroniec M, Nowak I (2020) Ruthenium-containing SBA-12 catalysts for anisole hydrodeoxygenation. Catal Today 354:67–76. https://doi.org/10.1016/j.cattod.2020.03.006

    Article  CAS  Google Scholar 

  64. Gonzalez-Ildelfonso M, Escobar J, Gordillo-Cruz E, del Ángel P, Suárez-Toriello VA, De los Reyes JA (2022) RuS2-modified NiW/Al2O3 catalysts for refractory 4,6-dimethyl-dibenzothiophene hydrodesulfurization. Mater Chem Phys 278:125568. https://doi.org/10.1016/j.matchemphys.2021.125568

    Article  CAS  Google Scholar 

  65. Zhang X, Long J, Kong W, Zhang Q, Chen L, Wang T, Ma L, Li Y (2014) Catalytic upgrading of bio-oil over Ni-based catalysts supported on mixed oxides. Energy Fuels 28:2562–2570. https://doi.org/10.1021/ef402421j

    Article  CAS  Google Scholar 

  66. de Souza PM, Nie L, Borges LEP, Noronha FB, Resasco DE (2014) Role of oxophilic supports in the selective hydrodeoxygenation of m-cresol on Pd catalysts. Catal Lett 144:2005–2011. https://doi.org/10.1007/s10562-014-1337-y

    Article  CAS  Google Scholar 

  67. Olcese RN, Bettahar M, Petitjean D, Malaman B, Giovanella F, Dufour A (2012) Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst. Appl Catal B Environ 115–116:63–73. https://doi.org/10.1016/J.APCATB.2011.12.005

    Article  Google Scholar 

Download references

Acknowledgements

Reyna Rios and Edgar Ortiz express their gratitude to CONACYT (Mexico) for financial support through graduated student scholarships and project funding: A1-S-41193. R. Rios expresses her gratitude to E. I. Fuentes-Oliver for the valuable comments to improve the manuscript and support for image processing. We want to acknowledge the expert technical assistance of Dr. David Dominguez.

Funding

This study is a product of the funding A1-S-41193 received by CONACYT (Mexico).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Escobar or J. A. de los Reyes.

Ethics declarations

Conflict of Interest

The authors declare no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rios-Escobedo, R., Ortiz-Santos, E., Colín-Luna, J.A. et al. Anisole Hydrodeoxygenation: A Comparative Study of Ni/TiO2-ZrO2 and Commercial TiO2 Supported Ni and NiRu Catalysts. Top Catal 65, 1448–1461 (2022). https://doi.org/10.1007/s11244-022-01662-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01662-x

Keywords

Navigation