Skip to main content
Log in

Role of Oxophilic Supports in the Selective Hydrodeoxygenation of m-Cresol on Pd Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The hydrodeoxygenation of m-cresol has been studied on SiO2- and ZrO2-supported Pd catalysts. Regardless of metal dispersion, the latter exhibit greatly enhanced selectivity to toluene. This remarkable support effect can be explained in terms of a mechanism that involves a keto-intermediate tautomer favored by oxophilic sites on the support.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bu Q, Lei H, Zacher AH, Wang L, Ren S, Liang J, Wei Y, Liu Y, Tang J, Zhang Q, Ruan R (2012) Bioresour Technol 124:470–477

    Article  CAS  Google Scholar 

  2. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD (2011) Appl Catal A 407:1–19

    Article  CAS  Google Scholar 

  3. Nie L, de Souza PM, Noronha FB, An W, Sooknoi T, Resasco DE (2014) J Mol Catal A 388–289:47–55

    Article  Google Scholar 

  4. Gandarias I, Arias PL (2013) InTech. Chapter 10. doi:10.5772/52581

  5. Gandarias I, Barrio VL, Requies J, Arias PL, Cambra JF, Güemez MB (2008) Int J Hydrogen Energy 33(13):3485–3488

    Article  CAS  Google Scholar 

  6. Nylén U, Arechederra JM, Pawelec B, Delgado JF, Pascual MP, Garcia-Fierro JL (2008) Energy Fuels 22:2138–2148

    Article  Google Scholar 

  7. Echeandia S, Arias PL, Barrio VL, Pawelec B, Garcia-Fierro JL (2010) Appl Catal B 101:1–12

    Article  CAS  Google Scholar 

  8. Gutierrez A, Kaila RK, Honkela ML, Slioor R, Krause AOI (2009) Catal Today 147:239–246

    Article  CAS  Google Scholar 

  9. Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Ind Eng Chem Res 48:10324–10334

    Article  CAS  Google Scholar 

  10. Wildschut J, Iqbal M, Mahfud FH, Cabrera IM, Venderbosch RH, Heeres HJ (2010) Energy Environ Sci 3:962–970

    Article  CAS  Google Scholar 

  11. He Z, Wang X (2012) Catal Sustain Energy 1:28–52

    Google Scholar 

  12. Mortensen PM, Grunwaldt J-D, Jensen PA, Jensen AD (2013) ACS Catal 3:1774–1785

    Article  CAS  Google Scholar 

  13. Stakheev AY, Kustov LM (1999) Appl Catal A 188:3–35

    Article  CAS  Google Scholar 

  14. Yakovlev VA, Khromova SA, Sherstyuk OV, Dundich VO, Ermakov DY, Novopashina VM, Lebedev MY, Bulavchenko O, Parmon VN (2009) Catal Today 144:362–366

    Article  CAS  Google Scholar 

  15. Velu S, Kapoor MP, Inagaki S, Suzuki K (2003) Appl Catal A 245:317–331

    Article  CAS  Google Scholar 

  16. Lin SD, Sanders DK, Vannice MA (1994) J Catal 147:370

    Article  CAS  Google Scholar 

  17. Lin SD, Sanders DK, Vannice MA (1994) Appl Catal A 113:59

    Article  CAS  Google Scholar 

  18. Zhao C, Lercher JA (2012) ChemCatChem 4:64–68

    Article  CAS  Google Scholar 

  19. Foster AF, Do PTM, Lobo RF (2012) Top Catal 55:118–128

    Article  CAS  Google Scholar 

  20. Do PTM, Foster AJ, Chen JG, Lobo RF (2012) Green Chem 14:1388–1397

    Article  CAS  Google Scholar 

  21. Huff SJ, Klein MT (1983) Ind Eng Chem Fundam 22:426–430

    Article  Google Scholar 

  22. Laurent E, Ceteno A, Delmon B (1994) Stud Surf Sci Catal 88:573–578

    Article  CAS  Google Scholar 

  23. Al-Ghamdi K (2011) Investigation of heterogeneous base catalysed acetone conversion. PhD thesis, University of Glasgow. http://theses.gla.ac.uk/2878/1/2011al-ghamdiphd.pdf

  24. Murase Y, Kato E (1978) Nippon Kagaku Kaishi 367

  25. Morterra C, Cerrato G, Ferronia L, Montanaro L (1994) Mater Chem Phys 37:243

    Article  CAS  Google Scholar 

  26. Baeza BB, Ramos IR, Ruiz AG (1998) Langmuir 14:3556

    Article  Google Scholar 

  27. Nakano Y, Iizuka T, HaTorri H, Tanabe K (1979) J Catal 57:1–10

    Article  CAS  Google Scholar 

  28. Ouyang F, Nakayama A, Tabada K, Suzuki E (2000) J Phys Chem B 104:2012–2018

    Article  CAS  Google Scholar 

  29. Zhu X, Lobban LL, Mallinson RG, Resasco DE (2011) J Catal 281:21–29

    Article  CAS  Google Scholar 

  30. Wan H, Chaudhari RV, Subramaniam B (2012) Top Catal 55(3–4):129–139

    Article  CAS  Google Scholar 

  31. Gevert BS, Otterstedt JE, Massoth FE (1987) Appl Catal 31(1):119–131

    Article  CAS  Google Scholar 

  32. Furimsky E, Mikhlin JA, Jones DQ, Adley T, Baikowitz H (1986) J Chem Eng 64(6):982–985

    CAS  Google Scholar 

  33. Romero Y, Richard F, Brunet S (2010) Appl Catal B 98(3-4):213–223

  34. Benson SW (1968) Thermochemical kinetics: methods for estimation of thermochemical data and rate parameters. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

Support from the National Science Foundation (EPSCoR0814361), US Department of Energy (DE-FG36GO88064), and the Oklahoma Bioenergy Center is greatly appreciated. Priscilla M. de Souza thanks CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Resasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, P.M., Nie, L., Borges, L.E.P. et al. Role of Oxophilic Supports in the Selective Hydrodeoxygenation of m-Cresol on Pd Catalysts. Catal Lett 144, 2005–2011 (2014). https://doi.org/10.1007/s10562-014-1337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1337-y

Keywords

Navigation