Skip to main content
Log in

Mechanistic Study of Tungsten Bipyridyl Tetracarbonyl Electrocatalysts for CO2 Fixation: Exploring the Roles of Explicit Proton Sources and Substituent Effects

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Tungsten bipyridyl tetracarbonyl complexes were shown to reduce CO2 to CO in acetonitrile [Chem. Sci., 2014, 5, 1894–1900]. Here, we employ density functional theory (DFT) calculations to investigate the electronic structure and reactivity of a series of tungsten electrocatalysts, [W(bpy-R)(CO)4] (where R = H, CH3, tBu, OCH3, CF3, and CN), for the CO2 reduction reaction (CO2RR). Our proposed mechanism suggests that initial reduction of the starting material by two electrons is required to access the active catalyst upon CO dissociation, which is slightly endergonic, consistent with the slow product release observed experimentally. The doubly reduced species, which has a closed-shell singlet ground state, can bind CO2 via an η2-CO2 binding mode to yield the metallocarboxylate intermediate. Based on the energy span model, CO2 addition is the TOF-determining transition state (TDTS) in the presence of water as the proton source. Different substituents at the 4,4’-positions of the bipyridine ligand in [W(bpy-R)(CO)4] (R = H, CH3, tBu, OCH3, CF3, and CN) were considered to comprehend the substituent effects for CO2RR. DFT results show that electron-withdrawing substituents, such as CN and CF3, do not yield efficient CO2 reduction catalysts due to the necessity of forming high energy intermediates for the protonation steps, resulting in low TOFs and high overpotentials. Among electron-donating groups, the parent compound and tert-butyl substituted complex are the most active catalysts for CO2RR due to higher TOFs at low overpotentials. Overall, based on the energy span model and theoretical Tafel plots, our computational approach provides quantitative information for designing CO2 reduction electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CO 2 RR, :

CO2 reduction reaction

HER :

Hydrogen evolution reaction

DFT :

Density functional theory

TDTS :

TOF-determining transition state

TDI :

TOF-determining intermediate

VSFG :

Vibrational sum-frequency generation spectroscopy

NMP :

N-methyl-2-pyrrolidone

SCE :

Saturated calomel electrode

EDGs :

Electron-donating groups

EWGs :

Electron-withdrawing groups

ESM :

Energy span model

References

  1. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366

    Article  CAS  PubMed  Google Scholar 

  2. Berry HL, Bowen K, Kjellstrom T (2010) Climate change and mental health: a causal pathways framework. Int J Public Health 55(2):123–132

    Article  PubMed  Google Scholar 

  3. Bourque F, Cunsolo Willox A (2014) Climate change: the next challenge for public mental health? Int Rev Psychiatry 26(4):415–422

    Article  PubMed  Google Scholar 

  4. Obradovich N, Migliorini R, Paulus MP, Rahwan I (2018) Empirical evidence of mental health risks posed by climate change. Proc Natl Acad Sci U S A 115:10953–10958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burke M, González F, Baylis P, Heft-Neal S, Baysan C, Basu S, Hsiang S (2018) Higher temperatures increase suicide rates in the United States and Mexico. Nat Clim Change 8(8):723–729

    Article  Google Scholar 

  6. Humphrey V, Zscheischler J, Ciais P, Gudmundsson L, Sitch S, Seneviratne SI (2018) Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560(7720):628–631

    Article  CAS  PubMed  Google Scholar 

  7. Brook EJ, Buizert C (2018) Antarctic and global climate history viewed from ice cores. Nature 558(7709):200–208

    Article  CAS  PubMed  Google Scholar 

  8. Higgins JA, Kurbatov AV, Spaulding NE, Brook E, Introne DS, Chimiak LM, Yan Y, Mayewski PA, Bender ML (2015) Atmospheric composition 1 million years ago from blue ice in the Allan Hills. Antarctica Proc Natl Acad Sci U S A 112(22):6887–6891

    Article  CAS  PubMed  Google Scholar 

  9. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793–796

    Article  CAS  PubMed  Google Scholar 

  10. Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63(1):541–569

    Article  CAS  PubMed  Google Scholar 

  11. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38(1):89–99

    Article  CAS  PubMed  Google Scholar 

  12. Costentin C, Robert M, Savéant J-M (2013) Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev 42(6):2423–2436

    Article  CAS  PubMed  Google Scholar 

  13. Costentin C, Savéant J-M (2017) Towards an intelligent design of molecular electrocatalysts. Nat Rev Chem 1(11):0087

    Article  CAS  Google Scholar 

  14. Navarro-Jaén S, Virginie M, Bonin J, Robert M, Wojcieszak R, Khodakov AY (2021) Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem 5(8):564–579

  15. Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504

    Article  CAS  PubMed  Google Scholar 

  16. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731

    Article  CAS  Google Scholar 

  17. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43(2):631–675

    Article  CAS  PubMed  Google Scholar 

  19. Takeda H, Cometto C, Ishitani O, Robert M (2017) Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal 7(1):70–88

    Article  CAS  Google Scholar 

  20. Francke R, Schille B, Roemelt M (2018) Homogeneously catalyzed electroreduction of carbon dioxide—methods, mechanisms, and catalysts. Chem Rev 118(9):4631–4701

    Article  CAS  PubMed  Google Scholar 

  21. Fesseler J, Jeoung J-H, Dobbek H (2015) How the [NiFe4S4] Cluster of CO Dehydrogenase Activates CO2 and NCO. Angew Chem, Int Ed 54(29):8560–8564

    Article  CAS  Google Scholar 

  22. Jeoung J-H, Dobbek H (2007) Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318(5855):1461–1464

    Article  CAS  PubMed  Google Scholar 

  23. Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A (2021) Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 50(6):3755–3823

    Article  CAS  PubMed  Google Scholar 

  24. Grice KA (2017) Carbon dioxide reduction with homogenous early transition metal complexes: opportunities and challenges for developing CO2 catalysis. Coord Chem Rev 336:78–95

    Article  CAS  Google Scholar 

  25. Kinzel NW, Werlé C, Leitner W (2021) Transition metal complexes as catalysts for the electroconversion of CO2: an organometallic perspective. Angew Chem. Int Ed 60(21):11628–11686

    Article  CAS  Google Scholar 

  26. Beley M, Collin J-P, Ruppert R, Sauvage J-P (1984) Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water. J Chem Soc, Chem Commun 19:1315–1316

    Article  Google Scholar 

  27. Beley M, Collin JP, Ruppert R, Sauvage JP (1986) Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J Am Chem Soc 108(24):7461–7467

    Article  CAS  PubMed  Google Scholar 

  28. Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+-Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 9:536–538

    Article  Google Scholar 

  29. Hawecker J, Lehn J-M, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2′-bipyridine). J Chem Soc Chem Commun 6:328–330

    Article  Google Scholar 

  30. Hammouche M, Lexa D, Savéant JM, Momenteau M (1988) Catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. J Electroanal Chem 249(1–2):347–351

    Article  CAS  Google Scholar 

  31. Hammouche M, Lexa D, Momenteau M, Savéant JM (1991) Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins, Role of the addition of magnesium cations. J Am Chem Soc 113(22):8455–8466

    Article  CAS  Google Scholar 

  32. Keith JA, Grice KA, Kubiak CP, Carter EA (2013) Elucidation of the selectivity of proton-dependent electrocatalytic CO2 reduction by fac-Re(bpy)(CO)3Cl. J Am Chem Soc 135(42):15823–15829

    Article  CAS  PubMed  Google Scholar 

  33. Benson EE, Sampson MD, Grice KA, Smieja JM, Froehlich JD, Friebel D, Keith JA, Carter EA, Nilsson A, Kubiak CP (2013) The electronic states of rhenium bipyridyl electrocatalysts for CO2 reduction as revealed by X-ray absorption spectroscopy and computational quantum chemistry. Angew Chem Int Ed 52(18):4841–4844

    Article  CAS  Google Scholar 

  34. Sampson MD, Froehlich JD, Smieja JM, Benson EE, Sharp ID, Kubiak CP (2013) Direct observation of the reduction of carbon dioxide by rhenium bipyridine catalysts. Energy Environ Sci 6(12):3748–3755

    Article  CAS  Google Scholar 

  35. Benson EE, Grice KA, Smieja JM, Kubiak CP (2013) Structural and spectroscopic studies of reduced [Re(bpy-R)(CO)3]−1 species relevant to CO2 reduction. Polyhedron 58:229–234

    Article  CAS  Google Scholar 

  36. Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew Chem Int Ed 50(42):9903–9906

    Article  CAS  Google Scholar 

  37. Sung S, Kumar D, Gil-Sepulcre M, Nippe M (2017) Electrocatalytic CO2 reduction by imidazolium-functionalized molecular catalysts. J Am Chem Soc 139(40):13993–13996

    Article  CAS  PubMed  Google Scholar 

  38. Sung S, Li X, Wolf LM, Meeder JR, Bhuvanesh NS, Grice KA, Panetier JA, Nippe M (2019) Synergistic effects of imidazolium-functionalization on fac-Mn(CO)3 bipyridine catalyst platforms for electrocatalytic carbon dioxide reduction. J Am Chem Soc 141(16):6569–6582

    Article  CAS  PubMed  Google Scholar 

  39. Clark ML, Cheung PL, Lessio M, Carter EA, Kubiak CP (2018) Kinetic and mechanistic effects of bipyridine (bpy) substituent, labile ligand, and Brønsted acid on electrocatalytic CO2 reduction by Re(bpy) complexes. ACS Catal 8(3):2021–2029

    Article  CAS  Google Scholar 

  40. Rawat KS, Mandal SC, Pathak B (2019) A computational study of electrocatalytic CO2 reduction by Mn(I) complexes: role of bipyridine substituents. Electrochim Acta 297:606–612

    Article  CAS  Google Scholar 

  41. Rotundo L, Azzi E, Deagostino A, Garino C, Nencini L, Priola E, Quagliotto P, Rocca R, Gobetto R, Nervi C (2019) Electronic Effects of Substituents on fac-M(bpy-R)(CO)3 (M = Mn, Re) Complexes for Homogeneous CO2 Electroreduction Front Chem 7:417

  42. Sampson MD, Kubiak CP (2016) Manganese electrocatalysts with bulky bipyridine ligands: utilizing lewis acids to promote carbon dioxide reduction at low overpotentials. J Am Chem Soc 138(4):1386–1393

    Article  CAS  PubMed  Google Scholar 

  43. Sampson MD, Nguyen AD, Grice KA, Moore CE, Rheingold AL, Kubiak CP (2014) Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis. J Am Chem Soc 136(14):5460–5471

    Article  CAS  PubMed  Google Scholar 

  44. Smieja JM, Kubiak CP (2010) Re(bipy-tBu)(CO)3Cl−improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies. Inorg Chem 49(20):9283–9289

    Article  CAS  PubMed  Google Scholar 

  45. Agarwal J, Shaw TW, Schaefer HF, Bocarsly AB (2015) Design of a catalytic active site for electrochemical CO2 reduction with Mn(I)-tricarbonyl species. Inorg Chem 54(11):5285–5294

    Article  CAS  PubMed  Google Scholar 

  46. Vandezande JE, Schaefer HF (2018) CO2 reduction pathways on MnBr(N-C)(CO)3 electrocatalysts. Organometallics 37(3):337–342

    Article  CAS  Google Scholar 

  47. Nichols AW, Machan CW (2019) Secondary-sphere effects in molecular electrocatalytic CO2 reduction. Front Chem 7(397):1–19

    Google Scholar 

  48. Talukdar K, Sinha Roy S, Amatya E, Sleeper EA, Le Magueres P, Jurss JW (2020) Enhanced electrochemical CO2 reduction by a series of molecular rhenium catalysts decorated with second-sphere hydrogen-bond donors. Inorg Chem 59(9):6087–6099

    Article  CAS  PubMed  Google Scholar 

  49. Roy SS, Talukdar K, Jurss JW (2021) Electro- and photochemical reduction of CO2 by molecular manganese catalysts: exploring the positional effect of second-sphere hydrogen-bond donors. Chemsuschem 14(2):662–670

    Article  CAS  PubMed  Google Scholar 

  50. Clark ML, Grice KA, Moore CE, Rheingold AL, Kubiak CP (2014) Electrocatalytic CO2 reduction by M(bpy-R)(CO)4 (M = Mo, W; R = H, tBu) complexes electrochemical, spectroscopic, and computational studies and comparison with group 7 catalysts. Chem Sci 5(5):1894–1900

    Article  CAS  Google Scholar 

  51. Tory J, Setterfield-Price B, Dryfe RAW, Hartl F (2015) [M(CO)4(2,2′-bipyridine)] (M=Cr, Mo, W) complexes as efficient catalysts for electrochemical reduction of CO2 at a gold electrode. ChemElectroChem 2(2):213–217

    Article  CAS  Google Scholar 

  52. Neri G, Donaldson PM, Cowan AJ (2017) The role of electrode-catalyst interactions in enabling efficient CO2 reduction with Mo(bpy)(CO)4 as revealed by vibrational sum-frequency generation spectroscopy. J Am Chem Soc 139(39):13791–13797

    Article  CAS  PubMed  Google Scholar 

  53. Franco F, Cometto C, Sordello F, Minero C, Nencini L, Fiedler J, Gobetto R, Nervi C (2015) Electrochemical reduction of CO2 by M(CO)4(diimine) complexes (M=Mo, W): catalytic activity improved by 2,2′-dipyridylamine. ChemElectroChem 2(9):1372–1379

    Article  CAS  Google Scholar 

  54. Rotundo L, Garino C, Gobetto R, Nervi C (2018) Computational study of the electrochemical reduction of W(CO)4(2,2′-dipyridylamine). Inorg Chim Acta 470:373–378

    Article  CAS  Google Scholar 

  55. Grice KA, Saucedo C (2016) Electrocatalytic reduction of CO2 by group 6 M(CO)6 Species without “Non-Innocent” ligands. Inorg Chem 55(12):6240–6246

    Article  CAS  PubMed  Google Scholar 

  56. Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52(5):2484–2491

    Article  CAS  PubMed  Google Scholar 

  57. Hooe SL, Dressel JM, Dickie DA, Machan CW (2020) Highly efficient electrocatalytic reduction of CO2 to CO by a molecular chromium complex. ACS Catal 10(2):1146–1151

    Article  CAS  Google Scholar 

  58. Moreno JJ, Hooe SL, Machan CW (2021) DFT study on the electrocatalytic reduction of CO2 to CO by a molecular chromium complex. Inorg Chem 60(6):3635–3650

    Article  CAS  PubMed  Google Scholar 

  59. Zhang P, Yang X, Hou X, Xu X, Xiao B, Huang J, Stampfl C (2019) Metal–bipyridine complexes as electrocatalysts for the reduction of CO2: a density functional theory study. Phys Chem Chem Phys 21(42):23742–23748

    Article  CAS  PubMed  Google Scholar 

  60. Su X, McCardle KM, Chen L, Panetier JA, Jurss JW (2019) Robust and selective cobalt catalysts bearing redox-active bipyridyl-N-heterocyclic carbene frameworks for electrochemical CO2 reduction in aqueous solutions. ACS Catal 9(8):7398–7408

    Article  CAS  Google Scholar 

  61. Li X, Panetier JA (2021) Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2 and Me4) for CO2-to-CO conversion over H2 formation. Phys Chem Chem Phys 23:14940–14951

    Article  CAS  PubMed  Google Scholar 

  62. Li X, Panetier JA (2021) Computational study for CO2-to-CO conversion over proton reduction using [Re[bpyMe(Im-R)](CO)3Cl]+ (R = Me, Me2, and Me4) electrocatalysts and comparison with manganese analogues. ACS Catal 11(21):12989–13000

  63. Kozuch S, Shaik S (2011) How to conceptualize catalytic cycles? the energetic span model. Acc Chem Res 44(2):101–110

    Article  CAS  PubMed  Google Scholar 

  64. Kozuch S, Shaik S (2008) Kinetic-quantum chemical model for catalytic cycles: the haber−bosch process and the effect of reagent concentration. J Phys Chem A 112(26):6032–6041

    Article  CAS  PubMed  Google Scholar 

  65. Kozuch S, Shaik S (2006) A combined kinetic−quantum mechanical model for assessment of catalytic cycles: application to cross-coupling and heck reactions. J Am Chem Soc 128(10):3355–3365

    Article  CAS  PubMed  Google Scholar 

  66. Costentin C, Passard G, Robert M, Savéant J-M (2014) Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc Natl Acad Sci U S A 111(42):14990–14994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Costentin C, Savéant J-M (2014) Multielectron, multistep molecular catalysis of electrochemical reactions: benchmarking of homogeneous catalysts. ChemElectroChem 1(7):1226–1236

    Article  CAS  Google Scholar 

  68. Costentin C, Robert M, Savéant J-M, Tatin A (2015) Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water. Proc Natl Acad Sci U S A 112:6882–6886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Azcarate I, Costentin C, Robert M, Savéant J-M (2016) Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J Am Chem Soc 138(51):16639–16644

    Article  CAS  PubMed  Google Scholar 

  70. Azcarate I, Costentin C, Robert M, Savéant J-M (2016) Dissection of electronic substituent effects in multielectron-multistep molecular catalysis. Electrochemical CO2-to-CO conversion catalyzed by iron porphyrins. J Phys Chem C 120(51):28951–28960

    Article  CAS  Google Scholar 

  71. Costentin C, Savéant J-M (2018) Homogeneous molecular catalysis of electrochemical reactions: manipulating intrinsic and operational factors for catalyst improvement. J Am Chem Soc 140(48):16669–16675

    Article  CAS  PubMed  Google Scholar 

  72. Savéant J-M (2019) Proton relays in molecular catalysis of electrochemical reactions: origin and limitations of the boosting effect. Angew Chem Int Ed 58(7):2125–2128

    Article  Google Scholar 

  73. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03, Wallingford, CT, 2016.

  74. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  PubMed  Google Scholar 

  75. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal Solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396

    Article  CAS  PubMed  Google Scholar 

  76. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77(2):123–141

    Article  CAS  Google Scholar 

  77. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  PubMed  Google Scholar 

  78. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1):215–241

    Article  CAS  Google Scholar 

  79. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90(4):2154–2161

    Article  CAS  Google Scholar 

  80. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Chem Phys 94(14):5523–5527

    Article  CAS  Google Scholar 

  81. Connelly NG, Geiger WE (1996) Chemical redox agents for organometallic chemistry. Chem Rev 96(2):877–910

    Article  CAS  PubMed  Google Scholar 

  82. Buss JA, VanderVelde DG, Agapie T (2018) Lewis acid enhancement of proton induced CO2 cleavage: bond weakening and ligand residence time effects. J Am Chem Soc 140(32):10121–10125

    Article  CAS  PubMed  Google Scholar 

  83. Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Commun 15:636–637

    Article  Google Scholar 

  84. Anderson JS, Iluc VM, Hillhouse GL (2010) Reactions of CO2 and CS2 with 1,2-Bis(di-tert-butylphosphino)ethane complexes of Nickel(0) and Nickel(I). Inorg Chem 49(21):10203–10207

    Article  CAS  PubMed  Google Scholar 

  85. Kim Y-E, Kim J, Lee Y (2014) Formation of a nickel carbon dioxide adduct and its transformation mediated by a Lewis acid. Chem Commun 50(78):11458–11461

    Article  CAS  Google Scholar 

  86. Riplinger C, Sampson MD, Ritzmann AM, Kubiak CP, Carter EA (2014) Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide. J Am Chem Soc 136(46):16285–16298

    Article  CAS  PubMed  Google Scholar 

  87. Riplinger C, Carter EA (2015) Influence of weak Brønsted acids on electrocatalytic CO2 reduction by manganese and rhenium bipyridine catalysts. ACS Catal 5(2):900–908

    Article  CAS  Google Scholar 

  88. Scheiner S (1994) AB initio studies of hydrogen bonds: the water dimer paradigm. Annu Rev Phys Chem 45(1):23–56

    Article  CAS  PubMed  Google Scholar 

  89. Morokuma K, Pedersen L (1968) Molecular-orbital studies of hydrogen bonds an ab initio calculation for dimeric H2O. J Chem Phys 48(7):3275–3282

    Article  CAS  Google Scholar 

  90. Mukhopadhyay A, Xantheas SS, Saykally RJ (2018) The water dimer II: theoretical investigations. Chem Phys Lett 700:163–175

    Article  CAS  Google Scholar 

  91. Shields RM, Temelso B, Archer KA, Morrell TE, Shields GC (2010) Accurate predictions of water cluster formation, (H2O)n=2−10. J Phys Chem A 114(43):11725–11737

    Article  CAS  PubMed  Google Scholar 

  92. Howard JC, Tschumper GS (2015) Benchmark structures and harmonic vibrational frequencies near the CCSD(T) complete basis set limit for small water clusters: (H2O)n = 2, 3, 4, 5, 6. J Chem Theory Comput 11(5):2126–2136

    Article  CAS  PubMed  Google Scholar 

  93. Lane JR (2013) CCSDTQ optimized geometry of water dimer. J Chem Theory Comput 9(1):316–323

    Article  CAS  PubMed  Google Scholar 

  94. Chen J, Sit PHL (2015) Ab initio study of the structural properties of acetonitrile–water mixtures. Chem Phys 457:87–97

    Article  CAS  Google Scholar 

  95. Jr., J. R. Pliego., Riveros, J. M. (2000) Ab initio study of the hydroxide ion–water clusters: an accurate determination of the thermodynamic properties for the processes nH2O+OH→HO(H2O)n (n=1–4). J Chem Phys 112(9):4045–4052

    Article  Google Scholar 

  96. Egan CK, Paesani F (2018) Assessing many-body effects of water self-ions I: OH(H2O)n clusters. Che. Theory Comput 14(4):1982–1997

    Article  CAS  Google Scholar 

  97. Zanuttini D, Gervais B (2015) Ground and excited states of OH-(H2O)n clusters. J Phys Chem A 119(29):8188–8201

    Article  CAS  PubMed  Google Scholar 

  98. Bankura A, Chandra A (2012) Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: quantum chemical and ab initio molecular dynamics studies. Chem Phys 400:154–164

    Article  CAS  Google Scholar 

  99. Agmon N, Bakker HJ, Campen RK, Henchman RH, Pohl P, Roke S, Thämer M, Hassanali A (2016) Protons and hydroxide ions in aqueous systems. Chem Rev 116(13):7642–7672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xantheas SS (1995) Theoretical study of hydroxide ion-water clusters. J Am Chem Soc 117(41):10373–10380

    Article  CAS  Google Scholar 

  101. Smieja JM, Benson EE, Kumar B, Grice KA, Seu CS, Miller AJM, Mayer JM, Kubiak CP (2012) Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO. Proc Natl Acad Sci U S A 109(39):15646–15650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clark ML, Rudshteyn B, Ge A, Chabolla SA, Machan CW, Psciuk BT, Song J, Canzi G, Lian T, Batista VS, Kubiak CP (2016) Orientation of Cyano-substituted bipyridine Re(I) fac-tricarbonyl electrocatalysts bound to conducting Au surfaces. J Phys Chem C 120(3):1657–1665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R15GM131290. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

NIGMS Award Number R15GM131290.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Julien A. Panetier.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 385 KB)

Supplementary file2 (PDF 1434 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Panetier, J.A. Mechanistic Study of Tungsten Bipyridyl Tetracarbonyl Electrocatalysts for CO2 Fixation: Exploring the Roles of Explicit Proton Sources and Substituent Effects. Top Catal 65, 325–340 (2022). https://doi.org/10.1007/s11244-021-01529-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01529-7

Keywords

Navigation