Skip to main content
Log in

Recent Computational Insights into the Oxygen Activation by Copper-Dependent Metalloenzymes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Dioxygen (O2) is a key component of the earth’s atmosphere and is essential for life activities on the planet. Upon O2 activation, metalloenzymes are able to mediate various oxidative transformations related to many biosynthesis and metabolism processes. In this mini-review, we focus on the recent computational insights into the oxygen activation by several copper-dependent enzymes, including mono-copper enzyme lytic polysaccharide monooxygenase (LPMO), particulate methane monooxygenase (pMMO), as well as the binuclear copper enzymes peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine beta-monooxygenase (DβM). Understanding the structure–function relationships of these enzymes is of fundamental importance in chemistry and biology, and is also beneficial to engineering of these metalloenzymes for new functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from Ref. [66]. Copyright 2021 Springer Nature

Fig. 4

Similar content being viewed by others

References

  1. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Copper active sites in biology. Chem Rev 114(7):3659–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B (2018) Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars. Chem Rev 118(5):2593–2635

    Article  CAS  PubMed  Google Scholar 

  3. Wang VCC, Maji S, Chen PRY, Lee HK, Yu SSF, Chan SI (2017) Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem Rev 117(13):8574–8621

    Article  CAS  PubMed  Google Scholar 

  4. Mano N, de Poulpiquet A (2018) O2 reduction in enzymatic biofuel cells. Chem Rev 118(5):2392–2468

    Article  CAS  PubMed  Google Scholar 

  5. Koo CW, Rosenzweig AC (2021) Biochemistry of aerobic biological methane oxidation. Chem Soc Rev 50:3424–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hedegard ED, Ryde U (2018) Molecular mechanism of lytic polysaccharide monooxygenases. Chem Sci 9(15):3866–3880

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang BJ, Johnston EM, Li PF, Shaik S, Davies GJ, Walton PH, Rovira C (2018) QM/MM studies into the H2O2-dependent activity of lytic polysaccharide monooxygenases: evidence for the formation of a caged hydroxyl radical intermediate. Acs Catal 8(2):1346–1351

    Article  CAS  Google Scholar 

  8. Wang BJ, Wang ZF, Davies GJ, Walton PH, Rovira C (2020) Activation of O2 and H2O2 by lytic polysaccharide monooxygenases. Acs Catal 10(21):12760–12769

    Article  CAS  Google Scholar 

  9. Kim S, Stahlberg J, Sandgren M, Paton RS, Beckham GT (2014) Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci USA 111(1):149–154

    Article  CAS  PubMed  Google Scholar 

  10. Cowley RE, Tian L, Solomon EI (2016) Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases. Proc Natl Acad Sci USA 113(43):12035–12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chylenski P, Bissaro B, Sorlie M, Rohr AK, Varnai A, Horn SJ, Eijsink VGH (2019) Lytic polysaccharide monooxygenases in enzymatic processing of lignocellulosic biomass. Acs Catal 9(6):4970–4991

    Article  CAS  Google Scholar 

  12. Ciano L, Davies GJ, Tolman WB, Walton PH (2018) Bracing copper for the catalytic oxidation of C-H bonds. Nat Catal 1(8):571–577

    Article  CAS  Google Scholar 

  13. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sorlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330(6001):219–222

    Article  CAS  PubMed  Google Scholar 

  14. Kjaergaard CH, Qayyum MF, Wong SD, Xu F, Hemsworth GR, Walton DJ, Young NA, Davies GJ, Walton PH, Johansen KS, Hodgson KO, Hedman B, Solomon EI (2014) Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Proc Natl Acad Sci USA 111(24):8797–8802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beeson WT, Phillips CM, Cate JHD, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134(2):890–892

    Article  CAS  PubMed  Google Scholar 

  16. Courtade G, Ciano L, Paradisi A, Lindley PJ, Forsberg Z, Sorlie M, Wimmer R, Davies GJ, Eijsink VGH, Walton PH, Aachmann FL (2020) Mechanistic basis of substrate-O2 coupling within a chitin-active lytic polysaccharide monooxygenase: an integrated NMR/EPR study. Proc Natl Acad Sci USA 117:19178–19189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bissaro B, Rohr AK, Muller G, Chylenski P, Skaugen M, Forsberg Z, Horn SJ, Vaaje-Kolstad G, Eijsink VGH (2017) Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol 13(10):1123–1128

    Article  CAS  PubMed  Google Scholar 

  18. Kuusk S, Bissaro B, Kuusk P, Forsberg Z, Eijsink VGH, Sorlie M, Valjamae P (2018) Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. J Biol Chem 293(2):523–531

    Article  CAS  PubMed  Google Scholar 

  19. Filandr F, Man P, Halada P, Chang HH, Ludwig R, Kracher D (2020) The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay. Biotechn Biofuels 13(1):37

    Article  CAS  Google Scholar 

  20. Kracher D, Forsberg Z, Bissaro B, Gangl S, Preims M, Sygmund C, Eijsink VGH, Ludwig R (2020) Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase. FEBS J 287(5):897–908

    Article  CAS  PubMed  Google Scholar 

  21. Zhou HC, Zhang YB, Li T, Tan HD, Li GH, Yin H (2020) Distinct interaction of lytic polysaccharide monooxygenase with cellulose revealed by computational and biochemical studies. J Phys Chem Lett 11(10):3987–3992

    Article  CAS  PubMed  Google Scholar 

  22. Kittl R, Kracher D, Burgstaller D, Haltrich D, Ludwig R (2012) Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechn Biofuels 5:79

    Article  CAS  Google Scholar 

  23. Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VGH, Ludwig R (2016) Extracellular electron transfer systems fuel cellulose oxidative degradation. Science 352(6289):1098–1101

    Article  CAS  PubMed  Google Scholar 

  24. Wang BJ, Walton PH, Rovira C (2019) Molecular mechanisms of oxygen activation and hydrogen peroxide formation in lytic polysaccharide monooxygenases. Acs Catal 9(6):4958–4969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. Acs Chem Biol 6(12):1399–1406

    Article  CAS  PubMed  Google Scholar 

  26. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechn Biofuels 5:45

    Article  CAS  Google Scholar 

  27. Bertini L, Breglia R, Lambrughi M, Fantucci P, De Gioia L, Borsari M, Sola M, Bortolotti CA, Bruschi M (2018) Catalytic mechanism of fungal lytic polysaccharide monooxygenases investigated by first-principles calculations. Inorg Chem 57(1):86–97

    Article  CAS  PubMed  Google Scholar 

  28. Warren JJ, Mayer JM (2010) Tuning of the thermochemical and kinetic properties of ascorbate by its local environment: solution chemistry and biochemical implications. J Am Chem Soc 132(22):7784–7793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hedegard ED, Ryde U (2017) Targeting the reactive intermediate in polysaccharide monooxygenases. J Biolog Inorg Chem 22(7):1029–1037

    Article  Google Scholar 

  30. Jones SM, Transue WJ, Meier KK, Kelemen B, Solomon EI (2020) Kinetic analysis of amino acid radicals formed in H2O2-driven Cu-I LPMO reoxidation implicates dominant homolytic reactivity. Proc Natl Acad Sci USA 117(22):11916–11922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Loose JSM, Forsberg Z, Kracher D, Scheiblbrandner S, Ludwig R, Eijsink VGH, Vaaje-Kolstad G (2016) Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Protein Sci 25(12):2175–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hallberg BM, Ludwig R, Divne C (2015) Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun 6:7542

    Article  PubMed  Google Scholar 

  33. Courtade G, Wimmer R, Rohr AK, Preims M, Felice AKG, Dimarogona M, Vaaje-Kolstad G, Sorlie M, Sandgren M, Ludwig R, Eijsink VGH, Aachmann FL (2016) Interactions of a fungal lytic polysaccharide monooxygenase with beta-glucan substrates and cellobiose dehydrogenase. Proc Natl Acad Sci USA 113(21):5922–5927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bodenheimer AM, Odell WB, Oliver RC, Qian S, Stanley CB, Meilleur F (2018) Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms. Biochim Biophys Acta Gen Subj 1862(4):1031–1039

    Article  CAS  PubMed  Google Scholar 

  35. Laurent CVFP, Breslmayr E, Tunega D, Ludwig R, Oostenbrink C (2019) Interaction between cellobiose dehydrogenase and lytic polysaccharide monooxygenase. Biochemistry 58(9):1226–1235

    Article  CAS  PubMed  Google Scholar 

  36. Wang ZF, Feng SS, Rovira C, Wang BJ (2021) How Oxygen binding enhances long-range electron transfer: lessons from reduction of lytic polysaccharide monooxygenases by cellobiose dehydrogenase. Angew Chem Int Ed 60(5):2385–2392

    Article  CAS  Google Scholar 

  37. Wang ZF, Shaik S, Wang BJ (2021) Conformational motion of ferredoxin enables efficient electron transfer to heme in the full-length P450(TT). J Am Chem Soc 143(2):1005–1016

    Article  CAS  PubMed  Google Scholar 

  38. Singh RK, Blossom BM, Russo DA, Singh R, Weihe H, Andersen NH, Tiwari MK, Jensen PE, Felby C, Bjerrum MJ (2020) Detection and characterization of a novel copper-dependent intermediate in a lytic polysaccharide monooxygenase. Chem Eur J 26(2):454–463

    Article  CAS  PubMed  Google Scholar 

  39. Paradisi A, Johnston EM, Tovborg M, Nicoll CR, Ciano L, Dowle A, McMaster J, Hancock Y, Davies GJ, Walton PH (2019) Formation of a copper(II)-Tyrosyl complex at the active site of lytic polysaccharide monooxygenases following oxidation by H2O2. J Am Chem Soc 141(46):18585–18599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McEvoy A, Creutzberg J, Singh RK, Bjerrum MJ, Hedegard ED (2021) The role of the active site tyrosine in the mechanism of lytic polysaccharide monooxygenase. Chem Sci 12(1):352–362

    Article  CAS  Google Scholar 

  41. Ross MO, Rosenzweig AC (2017) A tale of two methane monooxygenases. J Biol Inorg Chem 22(2–3):307–319

    Article  CAS  PubMed  Google Scholar 

  42. Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C, Meng X, Yang H, Mesters C, Xiao F-S (2020) Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367:193–197

    Article  CAS  PubMed  Google Scholar 

  43. Newton M, Knorpp AJ, Sushkevich V, Palagin D, van Bokhoven J (2020) Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chem Soc Rev 49:1449–1486

    Article  CAS  PubMed  Google Scholar 

  44. Schwarz H, Shaik S, Li J (2017) Electronic effect on room-temperature, gas-phase C-H activation by cluster oxides and metal carbides: the methane challenge. J Am Chem Soc 139:17201–17212

    Article  CAS  PubMed  Google Scholar 

  45. Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241

    Article  CAS  PubMed  Google Scholar 

  46. Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54:2283–2294

    Article  CAS  PubMed  Google Scholar 

  47. Sazinsky MH, Lippard SJ (2015) Methane monooxygenase: functionalizing methane at iron and copper. Met Ions Life Sci 15:205–256

    Article  CAS  PubMed  Google Scholar 

  48. Tol RS, Heintz RJ, Lammers PEM (2003) Methane emission reduction: an application of FUND. Clim Change 57:71–98

    Article  CAS  Google Scholar 

  49. Chan SI, Yu SSF (2019) Copper protein constructs for methane oxidation. Nat Catal 2:286–287

    Article  CAS  Google Scholar 

  50. Kim HJ, Huh J, Kwon YW, Park D, Yu Y, Jang YE, Lee B-R, Jo E, Lee EJ, Heo Y, Lee W, Lee J (2019) Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat Catal 2:342–353

    Article  CAS  Google Scholar 

  51. Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332

    Article  CAS  PubMed  Google Scholar 

  52. Banerjee R, Jones JC, Lipscomb JD (2019) Soluble methane monooxygenase. Annu Rev Biochem 88:409–431

    Article  CAS  PubMed  Google Scholar 

  53. Baik MH, Newcomb M, Friesner RA, Lippard SJ (2003) Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem Rev 103:2385–2419

    Article  CAS  PubMed  Google Scholar 

  54. Banerjee R, Proshlyakov Y, Lipscomb JD, Proshlyakov DA (2015) Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518:431–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tinberg CE, Lippard SJ (2011) Dioxygen activation in soluble methane monooxygenase. Acc Chem Res 44:280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sirajuddin S, Barupala D, Helling S, Marcus K, Stemmler TL, Rosenzweig AC (2014) Effects of zinc on particulate methane monooxygenase activity and structure. J Biol Chem 289:21782–21794

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182

    Article  CAS  PubMed  Google Scholar 

  58. Smith SM, Rawat S, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2011) Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry 50:10231–10240

    Article  CAS  PubMed  Google Scholar 

  59. Ro SY, Ross MO, Deng YW, Batelu S, Lawton TJ, Hurley JD, Stemmler TL, Hoffman BM, Rosenzweig AC (2018) From micelles to bicelles: effect of the membrane on particulate methane monooxygenase activity. J Biol Chem 293:10457–10465

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cao L, Caldararu O, Rosenzweig AC, Ryde U (2018) Quantum refinement does not support dinuclear copper sites in crystal structures of particulate methane monooxygenase. Agnew Chem Int Ed 57:162–166

    Article  CAS  Google Scholar 

  61. Ross MO, MacMillan F, Wang J, Nisthal A, Lawto TJ, Olafson BD, Mayo SL, Rosenzweig AC, Hoffman BM (2019) Particulate methane monooxygenase contains only mononuclear copper centers. Science 364(6440):566–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Labourel A, Frandsen KEH, Zhang F, Brouilly N, Grisel S, Haon M, Ciano L, Ropartz D, Fanuel M, Martin F, Navarro D, Rosso M-N, Tandrup T, Bissaro B, Johansen KS, Zerva A, Walton PH, Henrissat B, Leggio LL, Berrin J-G (2020) A fungal family of lytic polysaccharide monooxygenase-like copper proteins. Nat Chem Biol 16(3):345–350

    Article  CAS  PubMed  Google Scholar 

  63. Liew EF, Tong D, Coleman NV, Holmes AJ (2014) Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. Microbiology 160:1267–1277

    Article  CAS  PubMed  Google Scholar 

  64. Ro SY, Schachner LF, Koo CW, Purohit R, Remis JP, Kenney GE, Liauw BW, Thomas PM, Patrie SM, Kelleher NL, Rosenzweig AC (2019) Native top-down mass spectrometry provides insights into the copper centers of membrane bound methane monooxygenase. Nat Commun 2019:2675–2686

    Article  Google Scholar 

  65. Opden Cam HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1(5):293–306

    Article  Google Scholar 

  66. Peng W, Qu X, Shaik S, Wang B (2021) Deciphering the oxygen activation mechanism at the CuC site of particulate methane monooxygenase. Nat Catal 4:266–273

    Article  CAS  Google Scholar 

  67. Klinman JP (1996) Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem Rev 96(7):2541–2562

    Article  CAS  PubMed  Google Scholar 

  68. Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304(5672):864–867

    Article  CAS  PubMed  Google Scholar 

  69. Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM (1997) Amidation of bioactive peptides: the structure of peptidylglycine alpha-hydroxylating monooxygenase. Science 278(5341):1300–1305

    Article  CAS  PubMed  Google Scholar 

  70. Thomas SA, Matsumoto AM, Palmiter RD (1995) Noradrenaline is essential for mouse fetal development. Nature 374:643–646

    Article  CAS  PubMed  Google Scholar 

  71. Hidaka H (1971) Fusaric (5-butylpicolinic) acid, an inhibitor of dopamine beta-hydroxylase, affects serotonin and noradrenaline. Nature 231(5297):54–55

    Article  CAS  PubMed  Google Scholar 

  72. Vendelboe TV, Harris P, Zhao Y, Walter TS, Harlos K, El Omari K, Christensen HE (2016) The crystal structure of human dopamine beta-hydroxylase at 2.9 Å resolution. Sci Adv 2(4):e1500980

    Article  PubMed  PubMed Central  Google Scholar 

  73. de la Lande A, Marti S, Parisel O, Moliner V (2007) Long distance electron-transfer mechanism in peptidylglycine alpha-hydroxylating monooxygenase: a perfect fitting for a water bridge. J Am Chem Soc 129(38):11700–11707

    Article  PubMed  Google Scholar 

  74. Blackburn NJ, Rhames FC, Ralle M, Jaron S (2000) Major changes in copper coordination accompany reduction of peptidylglycine monooxygenase: implications for electron transfer and the catalytic mechanism. J Biol Inorg Chem 5(3):341–353

    Article  CAS  PubMed  Google Scholar 

  75. Jaron S, Blackburn NJ (2001) Characterization of a half-apo derivative of peptidylglycine monooxygenase. Insight into the reactivity of each active site copper. Biochemistry 40(23):6867–6875

    Article  CAS  PubMed  Google Scholar 

  76. Siebert X, Eipper BA, Mains RE, Prigge ST, Blackburn NJ, Amzel LM (2005) The catalytic copper of peptidylglycine alpha-hydroxylating monooxygenase also plays a critical structural role. Biophys J 89(5):3312–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chufan EE, Prigge ST, Siebert X, Eipper BA, Mains RE, Amzel LM (2010) Differential reactivity between two copper sites in peptidylglycine alpha-hydroxylating monooxygenase. J Am Chem Soc 132(44):15565–15572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Evans JP, Ahn K, Klinman JP (2003) Evidence that dioxygen and substrate activation are tightly coupled in dopamine beta-monooxygenase Implications for the reactive oxygen species. J Biolog Chem 278(50):49691–49698

    Article  CAS  Google Scholar 

  79. Klinman JP (2006) The copper-enzyme family of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J Biol Chem 281(6):3013–3016

    Article  CAS  PubMed  Google Scholar 

  80. Itoh S (2015) Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions. Acc Chem Res 48(7):2066–2074

    Article  CAS  PubMed  Google Scholar 

  81. Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB (2017) Copper-oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem Rev 117(3):2059–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kunishita A, Ertem MZ, Okubo Y, Tano T, Sugimoto H, Ohkubo K, Fujieda N, Fukuzumi S, Cramer CJ, Itoh S (2012) Active site models for the CuA site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase. Inorg Chem 51:9465–9480

    Article  CAS  PubMed  Google Scholar 

  83. Sanchez-Eguia BN, Flores-Alamo M, Orio M, Castillo I (2015) Side-on cupric-superoxo triplet complexes as competent agents for H-abstraction relevant to the active site of PHM. Chem Commun 51(55):11134–11137

    Article  CAS  Google Scholar 

  84. Chen P, Solomon EI (2004) Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. J Am Chem Soc 126(15):4991–5000

    Article  CAS  PubMed  Google Scholar 

  85. Crespo A, Marti MA, Roitberg AE, Amzel LM, Estrin DA (2006) The catalytic mechanism of peptidylglycine alpha-hydroxylating monooxygenase investigated by computer simulation. J Am Chem Soc 128(39):12817–12828

    Article  CAS  PubMed  Google Scholar 

  86. Wu P, Fan F, Song J, Peng W, Liu J, Li C, Cao Z, Wang B (2019) Theory demonstrated a “coupled” mechanism for O2 activation and substrate hydroxylation by binuclear copper monooxygenases. J Am Chem Soc 141(50):19776–19789

    Article  CAS  PubMed  Google Scholar 

  87. Gherman BF, Cramer CJ (2009) Quantum chemical studies of molecules incorporating a Cu2O22+ core. Coord Chem Rev 253:723–753

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from NSFC (Nos. 21933009 and 22073077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binju Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Fang, W., Peng, W. et al. Recent Computational Insights into the Oxygen Activation by Copper-Dependent Metalloenzymes. Top Catal 65, 187–195 (2022). https://doi.org/10.1007/s11244-021-01444-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01444-x

Navigation