Skip to main content
Log in

Brief Review of Precipitated Iron-Based Catalysts for Low-Temperature Fischer–Tropsch Synthesis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Fischer–Tropsch synthesis (FTS) is a promising way to produce clean liquid fuels and high value-added chemicals from low-value carbon-containing resources such as coal, natural/shale gas, waste wood/plastics, and CO2 via syngas (CO + H2). Precipitated iron-based catalysts are one group of commercially viable FTS catalysts that are important in academic circles as well as in industry. Here, we briefly review the promoters for precipitated iron-based FTS catalysts, which critically influence the catalyst performance. Precipitated iron-based catalysts typically contain three types of promoters: reduction promoters, alkali promoters, and structural promoters. The major effects of reduction promoters on catalytic performance include shortening of the induction period and increasing the CO conversion. Alkali promoters significantly influence the catalyst activation and product selectivity. They facilitate carburization of iron and increase selectivity for the target hydrocarbons C5+ and 1-olefin. The heavier the alkali metal, the stronger the effect. The structural promoters are effective for increasing the resistance of precipitated iron-based catalysts to thermal sintering and physical attrition. However, the impact of structural promoters on chemical properties and resultant catalytic performance is still considered a matter of debate. In the case of alkali promoters and structural promoters, the optimal amount of loading is very important for obtaining high catalytic performance, and this deteriorates severely if loading exceeds the optimal range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from [36]. Copyright 2008, Elsevier

Fig. 2

Reproduced with permission from [19]. Copyright 2006, Elsevier

Fig. 3

Reproduced with permission from [27]. Copyright 2009, Elsevier

Scheme 1
Fig. 4

Reproduced with permission from [22]. Copyright 2014, Springer Nature

Fig. 5

Reproduced with permission from [23]. Copyright 2006, Elsevier

Fig. 6

Reproduced with permission from [52]. Copyright 2008, Elsevier

Fig. 7

Reproduced with permission from [53]. Copyright 2002, Elsevier

Fig. 8

Reproduced with permission from [14]. Copyright 2014, The Authors. Published by Elsevier

Fig. 9

Reproduced with permission from [54]. Copyright 2010, American Chemical Society

Fig. 10

Reproduced with permission from [13]. Copyright 2013, Springer Nature

Fig. 11

Reproduced with permission from [55]. Copyright 2004, Elsevier

Fig. 12

Reproduced with permission from [24]. Copyright 2014, Springer Nature

Fig. 13

Reproduced with permission from [24]. Copyright 2014, Springer Nature

Fig. 14

Reproduced with permission from [11]. Copyright 2010, The Korean Institute of Chemical Engineers

Fig. 15

Reproduced with permission from [73]. Copyright 2001, American Chemical Society

Fig. 16

Reproduced with permission from [11]. Copyright 2010, The Korean Institute of Chemical Engineers

Fig. 17

Reproduced with permission from [13]. Copyright 2013, Springer Nature

Fig. 18

Reproduced with permission from [23]. Copyright 2006, Elsevier

Fig. 19

Reproduced with permission from [11]. Copyright 2010, The Korean Institute of Chemical Engineers

Fig. 20

Reproduced with permission from [71]. Copyright 2012, Elsevier

Scheme 2

Similar content being viewed by others

References

  1. Anderson RB (1984) The Fischer–Tropsch synthesis. Academic, New York

    Google Scholar 

  2. Steynberg AP, Dry ME (2004) Fischer–Tropsch technology. Elsevier, Amsterdam

    Google Scholar 

  3. Dry ME (2003). In: Horvárth IT (ed) Encyclopedia of catalysis. Wiley-Interscience, Hoboken, pp 347–403

    Google Scholar 

  4. Dry ME (1990) Catal Today 6:183–210

    CAS  Google Scholar 

  5. van Steen E, Claeys M (2008) Chem Eng Technol 31:655–666

    Google Scholar 

  6. van Steen E, Claeys M, Möller KP, Nabaho D (2018) Appl Catal A 549:51–59

    Google Scholar 

  7. Davis BH (2003) Catal Today 84:83–98

    CAS  Google Scholar 

  8. Davis BH (2009) Catal Today 141:25–33

    CAS  Google Scholar 

  9. Yang J, Ma W, Chen D, Holmen A, Davis BH (2014) Appl Catal A 470:250–260

    CAS  Google Scholar 

  10. de Smit E, Weckhyysen BM (2008) Chem Soc Rev 37:2758–2781

    PubMed  Google Scholar 

  11. Hyun ST, Chun DH, Kim HJ, Yang JH, Yang JI, Lee HT, Lee KY, Jung H (2010) Korean Chem Eng Res 48:304–310

    CAS  Google Scholar 

  12. Chun DH, Lee HT, Yang JI, Kim HJ, Yang JH, Park JC, Kim BK, Jung H (2012) Catal Lett 142:452–429

    CAS  Google Scholar 

  13. Chun DH, Park JC, Lee HT, Yang JI, Hong SJ, Jung H (2013) Catal Lett 143:1035–1042

    CAS  Google Scholar 

  14. Chun DH, Park JC, Hong SY, Lim JT, Kim CS, Lee HT, Yang JI, Hong SJ, Jung H (2014) J Catal 317:135–143

    CAS  Google Scholar 

  15. Chun DH, Kim HJ, Lee HT, Yang JI, Yang JH, Jung H (2014) US Patent 8,642,500 B2

  16. Chun DH, Park JC, Rhim GB, Lee HT, Yang JI, Hong SJ, Jung H (2016) J Nanosci Nanotechnol 16:1660–1664

    PubMed  CAS  Google Scholar 

  17. Rhim GB, Hong SY, Park JC, Jung H, Rhee YW, Chun DH (2016) J Nanosci Nanotechnol 16:1793–1797

    PubMed  CAS  Google Scholar 

  18. Bae JS, Hong SY, Park JC, Rhim GB, Youn MH, Jeong H, Kang SW, Yang JI, Jung H, Chun DH (2019) Appl Catal B 244:576–582

    CAS  Google Scholar 

  19. Hayakawa H, Tanaka H, Fujimoto K (2006) Appl Catal A 310:24–30

    CAS  Google Scholar 

  20. O’Brien RJ, Xu L, Spicer RL, Bao S, Milburn DR, Davis BH (1997) Catal Today 36:325–334

    Google Scholar 

  21. O’Brien RJ, Davis BH (2004) Catal Lett 94:1–6

    Google Scholar 

  22. Pendyala VRR, Jacobs G, Hamdeh HH, Shafer WD, Sparks DE, Hopps S, Davis BH (2014) Catal Lett 144:1624–1635

    CAS  Google Scholar 

  23. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405–415

    CAS  Google Scholar 

  24. Pendyala VRR, Graham UM, Jacobs G, Hamdeh HH, Davis BH (2014) Catal Lett 144:1704–1716

    CAS  Google Scholar 

  25. Chonco ZH, Ferreira A, Lodya L, Claeys M, van Steen E (2013) J Catal 307:283–294

    CAS  Google Scholar 

  26. Li S, O’Brien RJ, Meitzner GD, Hamdeh H, Davis BH, Iglesia E (2001) Appl Catal A 219:215–222

    CAS  Google Scholar 

  27. de Smit E, Beale AM, Nikitenko S, Weckhuysen BM (2009) J Catal 262:244–256

    Google Scholar 

  28. Jiang F, Liu B, Geng S, Xu Y, Liu X (2018) Catal Sci Technol 8:4097–4107

    CAS  Google Scholar 

  29. Yu W, Wu B, Xu J, Tao Z, Xiang H, Li Y (2008) Catal Lett 125:116–122

    CAS  Google Scholar 

  30. Xu J, Bartholomew CH, Sudweeks J, Eggett DL (2003) Top Catal 26:55–71

    CAS  Google Scholar 

  31. Sonal PKK, Upadhyayula S (2020) Fuel 217:118044

    Google Scholar 

  32. Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E (2002) J Catal 206:202–217

    CAS  Google Scholar 

  33. Aluha J, Abatzoglou N (2017) Gold Bull 50:147–162

    Google Scholar 

  34. van der Kraan AM, Nonnekens RCH, Stoop F, Niemantsverdriet JW (1986) Appl Catal 27:285–298

    Google Scholar 

  35. van der Kraan AM, Nonnekens RCH (1986) Hyperfine Interact 28:899–902

    Google Scholar 

  36. Wan H, Wu B, Zhang C, Xiang H, Li Y (2008) J Mol Catal A 283:33–42

    CAS  Google Scholar 

  37. Jin Y, Datye AK (2000) J Catal 196:8–17

    CAS  Google Scholar 

  38. Hou W, Wu B, An X, Li T, Tao Z, Zheng H, Xiang H, Li Y (2007) Catal Lett 119:353–360

    CAS  Google Scholar 

  39. Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven JA (2017) Nature 541:68–71

    PubMed  CAS  Google Scholar 

  40. Phaahlamohlaka TN, Kumi DO, Dlamini MW, Forbes R, Jewell LL, Billing DG, Coville NJ (2017) ACS Catal 7:1568–1578

    CAS  Google Scholar 

  41. Phaahlamohlaka TN, Dlamini MW, Kumi DO, Forbes R, Jewell LL, Billing DG, Coville NJ (2020) Appl Catal A 599:117617

    Google Scholar 

  42. Nabaho D, Niemantsverdrietb JW(H), Claeys M, van Steen E (2016) Catal Today 275:27–34

    CAS  Google Scholar 

  43. Nabaho D, Niemantsverdrietb JWH, Claeys M, van Steen E (2016) Catal Today 261:17–27

    CAS  Google Scholar 

  44. Ghogia AC, Cayez S, Machado BF, Nzihou A, Serp P, Soulantica K, Minh DP (2020) ChemCatChem 12:1117–1128

    CAS  Google Scholar 

  45. de Smit E, de Groot FMF, Blume R, Hävecker M, Knop-Gericke A, Weckhuysen BM (2010) Phys Chem Chem Phys 12:667–680

    PubMed  Google Scholar 

  46. Chonco ZH, Lodya L, Claeys M, van Steen E (2013) J Catal 308:363–373

    CAS  Google Scholar 

  47. Bukur DB, Mukesh D, Patel SA (1990) Ind Eng Chem Res 29:194–204

    CAS  Google Scholar 

  48. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197–205

    CAS  Google Scholar 

  49. Lu Y, Zhang R, Cao B, Ge B, Tao FF, Shan J, Nguyen L, Bao Z, Wu T, Pote JW, Wang B, Yu F (2017) ACS Catal 7:5500–5512

    CAS  Google Scholar 

  50. Li Y, Gao W, Peng M, Zhang J, Sun J, Xu Y, Hong S, Liu X, Liu X, Wei M, Zhang B, Ma D (2020) Nat Commun 11:61

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Ma W, Kugler EL, Dadyburjor DB (2011) Energy Fuel 25:1931–1938

    CAS  Google Scholar 

  52. Gaube J, Klein HF (2008) Appl Catal A 350:126–132

    CAS  Google Scholar 

  53. Ngantsoue-Hoc W, Zhang Y, O’Brien RJ, Luo M (2002) Appl Catal A 236:77–89

    CAS  Google Scholar 

  54. Ribeiro MC, Jacobs G, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2010) J Phys Chem 114:7895–7903

    CAS  Google Scholar 

  55. Yang Y, Xiang HW, Xu YY, Bai L, Li YW (2004) Appl Catal A 266:181–194

    CAS  Google Scholar 

  56. Bukur DB, Lang X, Mukesh D, Zimmerman WH, Rosynek MP, Li C (1990) Ind Eng Chem Res 29:1588–1599

    CAS  Google Scholar 

  57. Bukur DB, Nowicki L, Lang X (2004) Chem Eng Sci 49:4615–4625

    Google Scholar 

  58. Ma WP, Ding YJ, Vazquez VHC, Burkur DB (2004) Appl Catal A 268:99–106

    CAS  Google Scholar 

  59. Lang ND, Williams AR (1976) Phys Rev Lett 37:212

    CAS  Google Scholar 

  60. Miller DG, Moskovits M (1988) J Phys Chem 92:6081–6085

    CAS  Google Scholar 

  61. Zhao G, Zhang C, Qin S, Xiang H, Li Y (2008) J Mol Catal A 286:137–142

    CAS  Google Scholar 

  62. Puskas I, Hurlbut RS (2003) Catal Today 84:99–109

    CAS  Google Scholar 

  63. Strenger HG Jr (1985) J Catal 92:426–428

    Google Scholar 

  64. An X, Wu B, Hou W, Wan H, Tao Z, Li T, Zhang Z, Xiang H, Li Y, Xu B, Yi F (2007) J Mol Catal A 263:266–272

    CAS  Google Scholar 

  65. Li J, Zhang C, Cheng X, Qing M, Xu J, Wu B, Yang Y, Li Y (2013) Appl Catal A 464–465:10–19

    Google Scholar 

  66. Luo M, Davis BH (2003) Appl Catal A 246:171–181

    CAS  Google Scholar 

  67. Dry ME, Oosthuizen GJ (1968) J Catal 11:18–24

    CAS  Google Scholar 

  68. Pour AN, Housaindokht MR, Zarkesh J, Tayyari SF (2010) J Ind Eng Chem 16:1025–1032

    Google Scholar 

  69. Han W, Wang L, Li Z, Tang H, Li Y, Huo C, Lan G, Yang X, Liu H (2019) Appl Catal A 572:158–167

    CAS  Google Scholar 

  70. Li J, Hou Y, Song Z, Liu C, Dong W, Zhang C, Yang Y, Li Y (2018) Mol Catal 449:1–7

    CAS  Google Scholar 

  71. Suo H, Wang S, Zhang C, Xu J, Wu B, Yang Y, Xiang H, Li YW (2012) J Catal 286:111–123

    CAS  Google Scholar 

  72. Zhang Y, Qing M, Wang H, Liu XW, Liu S, Wan H, Li L, Gao X, Yang Y, Wen XD, Li YW (2020). Catal Today. https://doi.org/10.1016/j.cattod.2020.02.026

    Article  Google Scholar 

  73. Zhao R, Goodwin JG Jr, Jothimurugesan K, Gangwal SK, Spivey JJ (2001) Ind Eng Chem Res 40:1065–1075

    CAS  Google Scholar 

  74. Mogorosi RP, Fischer N, Claeys M, van Steen E (2012) J Catal 289:140–150

    CAS  Google Scholar 

  75. Wan H, Wu B, Xiang H, Li Y (2012) ACS Catal 2:1877–1883

    CAS  Google Scholar 

  76. Wan HJ, Wu BS, An X, Li TZ, Tao ZH, Xiang HW, Li YW (2007) J Nat Gas Chem 16:130–138

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) through Grants funded by the Korean Government (Nos. NRF-2019R1A2C2086827 and NRF-2019M3D3A1A01069106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyun Chun.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Research Involving Human Participants and/or Animals

There were no human or animal subjects involved in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, D.H., Rhim, G.B., Youn, M.H. et al. Brief Review of Precipitated Iron-Based Catalysts for Low-Temperature Fischer–Tropsch Synthesis. Top Catal 63, 793–809 (2020). https://doi.org/10.1007/s11244-020-01336-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01336-6

Keywords

Navigation