Skip to main content

Advertisement

Log in

The Effect of Noble-Metal Deposition Routes on the Characteristics and Photocatalytic Activity of M-TiBi1.9%O2 (M = Pt and Pd)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of deposited noble-metals and their deposition routes on the photocatalytic decomposition of organic pollutants over M-TiBi1.9%O2 (M = Pt and Pd) under visible-light irradiation have been investigated. Glycol-assisted UV photodeposition and impregnation-reduction deposition routes (NaBH4 or combined He/H2) have been applied to prepare 1%M-TiBi1.9%O2 samples. The results show that the photocatalytic activity of 1%M/TiBi1.9%O2 via glycol-assisted UV pretreatment (1%M-365UV) is quite similar to those obtained after combined He/H2 pretreatment (1%M-He/H2), much superior to that of 1%M-NaBH4. A mild reduction process via glycol-assisted UV irradiation for 1%M-TiBi1.9%O2 shows impressive advantages over high temperature He/H2 reduction. The photocatalytic performance enhancement is attributed to the efficient capability of small Pt nanoparticles (NPs) for facilitating charge separation and providing active sites. It is hoped that this work could guide a facile synthesis of deposited noble-metal with small size toward achieving a highly-active supported noble-metal catalyst for diverse catalytic applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barakat T, Rooke JC, Tidahy HL, Hosseini M, Cousin R, Lamonier JF, Giraudon JM, De Weireld G, Su BL, Siffert S (2011) Noble-metal-based catalysts supported on zeolites and macro-mesoporous metal oxide supports for the total oxidation of volatile organic compounds. Chemsuschem 4:1420–1430

    PubMed  CAS  Google Scholar 

  2. Munoz-Batista MJ, Kubacka A, Gomez-Cerezo MN, Tudela D, Fernandez-Garcia M (2013) Sunlight-driven toluene photo-elimination using CeO2-TiO2 composite systems: a kinetic study. Appl Catal B 140:626–635

    Google Scholar 

  3. Zhang N, Yang MQ, Liu SQ, Sun YG, Xu YJ (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377

    PubMed  CAS  Google Scholar 

  4. Zhang YH, Tang ZR, Fu XZ, Xu YJ (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303–7314

    PubMed  CAS  Google Scholar 

  5. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9:1–12

    CAS  Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    PubMed  CAS  Google Scholar 

  7. Pan XY, Yang MQ, Fu XZ, Zhang N, Xu YJ (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5:3601–3614

    PubMed  CAS  Google Scholar 

  8. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C 25:1–29

    CAS  Google Scholar 

  9. Grabowska E, Marchelek M, Klimczuk T, Trykowski G, Zaleska-Medynska A (2016) Noble metal modified TiO2 microspheres: surface properties and photocatalytic activity under UV-vis and visible light. J Mol Catal A 423:191–206

    CAS  Google Scholar 

  10. Pan XY, Xu YJ (2013) Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light. J Phys Chem C 117:17996–18005

    CAS  Google Scholar 

  11. Weng B, Quan Q, Xu YJ (2016) Decorating geometry- and size-controlled sub-20 nm Pd nanocubes onto 2D TiO2 nanosheets for simultaneous H2 evolution and 1,1-diethoxyethane production. J Mater Chem A 4:18366–18377

    CAS  Google Scholar 

  12. Li ZS, Ye LT, Lei FL, Wang YL, Xu SH, Lin S (2016) Enhanced electro-photo synergistic catalysis of Pt (Pd)/ZnO/graphene composite for methanol oxidation under visible light irradiation. Electrochim Acta 188:450–460

    CAS  Google Scholar 

  13. Wang JG, Rao PH, An W, Xu JL, Men Y (2016) Boosting photocatalytic activity of Pd decorated TiO2 nanocrystal with exposed (001) facets for selective alcohol. Appl Catal B 195:141–148

    CAS  Google Scholar 

  14. Han C, Qi MY, Tang ZR, Gong JL, Xu YJ (2019) Gold nanorods-based hybrids with tailored structures for photoredox catalysis: fundamental science, materials design and applications. Nano Today 27:48–72

    CAS  Google Scholar 

  15. Jiang X, Fu X, Zhang L, Meng S, Chen S (2015) Photocatalytic reforming of glycerol for H2 evolution on Pt/TiO2: fundamental understanding the effect of co-catalyst Pt and the Pt deposition route. J Mater Chem A 3:2271–2282

    CAS  Google Scholar 

  16. Bailon-Garcia E, Carrasco-Marin F, Perez-Cadenas AF, Maldonado-Hodar FJ (2015) Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. J Catal 327:86–95

    CAS  Google Scholar 

  17. Liu PX, Zhao Y, Qin RX, Mo SG, Chen GX, Gu L, Chevrier DM, Zhang P, Guo Q, Zang DD, Wu BH, Fu G, Zheng NF (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–801

    PubMed  CAS  Google Scholar 

  18. Nie LH, Yu JG, Li XY, Cheng B, Liu G, Jaroniec M (2013) Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ Sci Technol 47:2777–2783

    PubMed  CAS  Google Scholar 

  19. Bian Z, Ren J, Zhu J, Wang S, Lu Y, Li H (2009) Self-assembly of BixTi1–xO2 visible photocatalyst with core-shell structure and enhanced activity. Appl Catal B 89:577–582

    CAS  Google Scholar 

  20. Li JJ, Cai SC, Xu Z, Chen X, Chen J, Jia HP, Chen J (2017) Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light. J Hazard Mater 325:261–270

    PubMed  CAS  Google Scholar 

  21. Tomita O, Otsubo T, Higashi M, Ohtani B, Abe R (2016) Partial oxidation of alcohols on visible-light-responsive WO3 photocatalysts loaded with palladium oxide cocatalyst. ACS Catal 6:1134–1144

    CAS  Google Scholar 

  22. Ong WL, Gao M, Ho GW (2013) Hybrid organic PVDF-inorganic M-rGO-TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production. Nanoscale 5:11283–11290

    PubMed  CAS  Google Scholar 

  23. Tan LL, Ong WJ, Chai SP, Mohamed AR (2015) Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl Catal B 166:251–259

    Google Scholar 

  24. Yan M, Li GL, Guo CS, Guo W, Ding DD, Zhang SH, Liu SQ (2016) WO3 – x sensitized TiO2 spheres with full-spectrum-driven photocatalytic activities from UV to near infrared. Nanoscale 8:17828–17835

    PubMed  CAS  Google Scholar 

  25. Wang P, Zhan S, Xia Y, Ma S, Zhou Q, Li Y (2017) The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl Catal B 207:335–346

    CAS  Google Scholar 

  26. Benjwal P, Kar KK (2015) One-step synthesis of Zn doped titania nanotubes and investigation of their visible photocatalytic activity. Mater Chem Phys 160:279–288

    CAS  Google Scholar 

  27. Lai W, Song W, Pang L, Wu Z, Zheng N, Li J, Zheng J, Yi X, Fang W (2013) The effect of starch addition on combustion synthesis of NiMo-Al2O3 catalysts for hydrodesulfurization. J Catal 303:80–91

    CAS  Google Scholar 

  28. Wei N, Cui H, Song Q, Zhang L, Song X, Wang K, Zhang Y, Li J, Wen J, Tian J (2016) Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. Appl Catal B 198:83–90

    CAS  Google Scholar 

  29. Jiang W, Bai S, Wang L, Wang X, Yang L, Li Y, Liu D, Wang X, Li Z, Jiang J, Xiong Y (2016) Integration of multiple plasmonic and Co-catalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution. Small 12:1640–1648

    PubMed  CAS  Google Scholar 

  30. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S (2002) A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Ed 41:2811–2813

    CAS  Google Scholar 

  31. Yang J, Wang X, Yang X, Li J, Zhang X, Zhao J (2015) Energy storage ability and anti-corrosion properties of Bi-doped TiO2 nanotube arrays. Electrochim Acta 169:227–232

    CAS  Google Scholar 

  32. Yang MQ, Han C, Zhang N, Xu YJ (2015) Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites. Nanoscale 7:18062–18070

    PubMed  CAS  Google Scholar 

  33. Lu Z, Song W, Ouyang C, Wang H, Zeng D, Xie C (2017) Enhanced visible-light photocatalytic performance of highly-dispersed Pt/g-C3N4 nanocomposites by one-step solvothermal treatment. RSC Adv 7:33552–33557

    CAS  Google Scholar 

  34. Jain N, Ravishankar N, Madras G (2017) Spectroscopic and kinetic insights of Pt-dispersion over microwave-synthesized GO-supported Pt-TiO2 for CO oxidation. Mol Catal 432:88–98

    CAS  Google Scholar 

  35. Zhang C, Li Y, Wang Y, He H (2014) Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature. Environ Sci Technol 48:5816–5822

    PubMed  CAS  Google Scholar 

  36. Bi QY, Du XL, Liu YM, Cao Y, He HY, Fan KN (2012) Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. J Am Chem Soc 134:8926–8933

    PubMed  CAS  Google Scholar 

  37. Halasi G, Schubert G, Solymosi F (2012) Comparative study on the photocatalytic decomposition of methanol on TiO2 modified by N and promoted by metals. J Catal 294:199–206

    CAS  Google Scholar 

  38. Sambeth JE, Centeno MA, Paul A, Briand LE, Thomas HJ, Odriozola JA (2000) In situ DRIFTS study of the adsorption-oxidation of CH3OH on V2O5. J Mol Catal A 161:89–97

    CAS  Google Scholar 

  39. Meng Q, Wang Z, Shen Y, Yan B, Wang S, Ma X (2012) DFT and DRIFTS studies of the oxidative carbonylation of methanol over gamma-Cu2Cl(OH)3: the influence of Cl. RSC Adv 2:8752–8761

    CAS  Google Scholar 

  40. Wang M, Zhang F, Zhu X, Qi Z, Hong B, Ding J, Bao J, Sun S, Gao C (2015) DRIFTS evidence for facet-dependent adsorption of gaseous toluene on TiO2 with relative photocatalytic properties. Langmuir 31:1730–1736

    PubMed  CAS  Google Scholar 

  41. Zhang F, Wang MJ, Zhu XD, Hong B, Wang WD, Qi ZM, Xie W, Ding JJ, Bao J, Sun S, Gao C (2015) Effect of surface modification with H2S and NH3 on TiO2 for adsorption and photocatalytic degradation of gaseous toluene. Appl Catal B 170:215–224

    Google Scholar 

  42. Li JJ, Yu EQ, Cai SC, Chen X, Chen J, Jia HP, Xu YJ (2019) Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light. Appl Catal B 240:141–152

    CAS  Google Scholar 

  43. Li JJ, Cai SC, Yu EQ, Weng B, Chen X, Chen J, Jia HP, Xu YJ (2018) Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites. Appl Catal B 233:260–271

    CAS  Google Scholar 

  44. Zhu ZR, Liu FY, Zhang W (2015) Fabricate and characterization of Ag/BaAl2O4 and its photocatalytic performance towards oxidation of gaseous toluene studied by FTIR spectroscopy. Mater Res Bull 64:68–75

    CAS  Google Scholar 

  45. Li JJ, Zhang M, Weng B, Chen X, Chen J, Jia HP (2020) Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance. Appl Surf Sci 507:145133–145145

    CAS  Google Scholar 

  46. Besselmann S, Loffler E, Muhler M (2000) On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts: a Raman and in situ DRIFTS study. J Mol Catal A 162:401–411

    Google Scholar 

  47. Zhang Y, Martin A, Berndt H, Lucke B, Meisel M (1997) FTIR investigation of surface intermediates formed during the ammoxidation of toluene over vanadyl pyrophosphate. J Mol Catal A 118:205–214

    CAS  Google Scholar 

  48. Hernandez-Alonso MD, Tejedor-Tejedor I, Coronado JM, Anderson MA (2011) Operando FTIR study of the photocatalytic oxidation of methylcyclohexane and toluene in air over TiO2-ZrO2 thin films: influence of the aromaticity of the target molecule on deactivation. Appl Catal B 101:283–293

    CAS  Google Scholar 

  49. Yu EQ, Chen J, Jia HP (2020) Enhanced light-driven photothermocatalytic activity on selectively dissolved LaTi1 – xMnxO3+δ perovskites by photoactivation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122942

    Article  PubMed  PubMed Central  Google Scholar 

  50. Benalioua B, Mansour M, Bentouami A, Boury B, Elandaloussi EH (2015) The layered double hydroxide route to Bi-Zn co-doped TiO2 with high photocatalytic activity under visible light. J Hazard Mater 288:158–167

    PubMed  CAS  Google Scholar 

  51. Hernandez-Alonso MD, Hungria AB, Martinez-Arias A, Fernandez-Garcia M, Coronado JM, Conesa JC, Soria J (2004) EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation. Appl Catal B 50:167–175

    CAS  Google Scholar 

  52. Pasternak S, Paz Y (2013) On the similarity and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants. Chemphyschem 14:2059–2070

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China [No. 2018YFC1903205]; National Natural Science Foundation of China [No. 21703233, 21976172]; the Key Program for Frontier Sciences from Chinese Academy of Sciences [QYZDB-SSWDQC022]. We acknowledge the Instrument Center (Dan-dan Zhang) at the Institute of Urban Environment for helping with Raman measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongpeng Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1147.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, M., Chen, J. et al. The Effect of Noble-Metal Deposition Routes on the Characteristics and Photocatalytic Activity of M-TiBi1.9%O2 (M = Pt and Pd). Top Catal 63, 882–894 (2020). https://doi.org/10.1007/s11244-020-01307-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01307-x

Keywords

Navigation