Skip to main content

Advertisement

Log in

Synthesis and Application of Novel Nano Fe-BTC/GO Composites as Highly Efficient Photocatalysts in the Dye Degradation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Nano Fe-BTC/graphene oxide (GO) composites were successfully synthesized by hydrothermal treatment with a microwave-assisted method. Samples were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption–desorption, Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), and Ultraviolet–visible diffuse reflection spectroscopy (UV–Vis DRS). SEM image of Fe-BTC/GO-30 showed the particle size of 30–50 nm on the GO surface. From the UV–Vis diffuse reflectance spectra, it revealed that nano Fe-BTC/GO composite absorbed the wavelengths in the visible light region with a low bandgap energy of 2.2–2.45 eV. Fe-BTC/GO nanocomposites were tested for the photocatalytic degradation of reactive yellow 145 (RY-145) in aqueous solution. Fe-BTC/GO composites exhibited high photocatalytic activity. Thus, at pH of 3 and high initial concentration of 100 mg RY-145/L, removal efficiency reached the value of 98.18% after 60 min. of reaction. In comparison with Fe-BTC/GO synthesized by the solvothermal method, nano Fe-BTC/GO showed much higher RY-145 removal efficiency. Moreover, this Fe-BTC/GO-30 showed high catalytic activity stability and could be reused, opening the high potential application of this promising photo-Fenton catalyst in photocatalytic degradation of organic pollutants from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Majewski MB, Noh H, Islamoglu T, Farha OK (2018) NanoMOFs: little crystallites for substantial applications. J Mater Chem A 6:7338–7350. https://doi.org/10.1039/c8ta02132e

    Article  CAS  Google Scholar 

  2. Li P, Moon SY, Guelta MA et al (2016) Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis. ACS Nano 10:9174–9182. https://doi.org/10.1021/acsnano.6b04996

    Article  CAS  Google Scholar 

  3. Xu W, Thapa KB, Ju Q et al (2018) Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coord Chem Rev 373:199–232. https://doi.org/10.1016/j.ccr.2017.10.014

    Article  CAS  Google Scholar 

  4. Wang B, Liu W, Zhang W, Liu J (2017) Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions. Nano Res 10:3826–3835. https://doi.org/10.1007/s12274-017-1595-2

    Article  CAS  Google Scholar 

  5. Liu X, Zhou Y, Zhang J et al (2017) Iron containing metal-organic frameworks: structure, synthesis, and applications in environmental remediation. ACS Appl Mater Interfaces 9:20255–20275. https://doi.org/10.1021/acsami.7b02563

    Article  CAS  Google Scholar 

  6. Vu TA, Le GH, Dao CD et al (2014) Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous photo-Fenton catalyst for reactive dye degradation. RSC Adv 40:41185–41194. https://doi.org/10.1039/c4ra06522k

    Article  CAS  Google Scholar 

  7. Vu TA, Le GH, Vu HT et al (2017) Highly photocatalytic activity of novel Fe-MIL-88B/GO nanocomposite in the degradation of reactive dye from aqueous solution. Mater Res Express 4:35038. https://doi.org/10.1088/2053-1591/aa6079

    Article  CAS  Google Scholar 

  8. Lin S, Zhao Y, Yun YS (2018) Highly effective removal of nonsteroidal anti-inflammatory pharmaceuticals from water by Zr(IV)-based metal-organic framework: adsorption performance and mechanisms. ACS Appl Mater Interfaces 10:28076–28085. https://doi.org/10.1021/acsami.8b08596

    Article  CAS  Google Scholar 

  9. Meteku BE, Huang J, Zeng J et al (2020) Magnetic metal–organic framework composites for environmental monitoring and remediation. Coord Chem Rev 413:213261. https://doi.org/10.1016/j.ccr.2020.213261

    Article  CAS  Google Scholar 

  10. Dan W (2018) Metal organic framework nano particles: potential contrast agents for magnetic resonance imaging. Biomed J Sci Technol Res. https://doi.org/10.26717/bjstr.2018.02.000710

    Article  Google Scholar 

  11. Monguzzi A, Ballabio M, Yanai N et al (2018) Highly fluorescent metal-organic-framework nanocomposites for photonic applications. Nano Lett 18:528–534. https://doi.org/10.1021/acs.nanolett.7b04536

    Article  CAS  Google Scholar 

  12. Llewellyn PL, Bourrelly S, Serre C et al (2008) High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir 24:7245–7250. https://doi.org/10.1021/la800227x

    Article  CAS  Google Scholar 

  13. Morris W, Wang S, Cho D et al (2017) Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal-organic framework. ACS Appl Mater Interfaces 9:33413–33418. https://doi.org/10.1021/acsami.7b01040

    Article  CAS  Google Scholar 

  14. Hu S, Liu M, Guo X et al (2017) Effects of monocarboxylic acid additives on synthesizing metal-organic framework NH2-MIL-125 with controllable size and morphology. Cryst Growth Des 17:6586–6595. https://doi.org/10.1021/acs.cgd.7b01250

    Article  CAS  Google Scholar 

  15. Li P, Klet RC, Moon SY et al (2015) Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: Significant enhancement in the degradation of a nerve agent simulant. Chem Commun 51:10925–10928. https://doi.org/10.1039/c5cc03398e

    Article  CAS  Google Scholar 

  16. Lan X, Huang N, Wang J, Wang T (2018) A general and facile strategy for precisely controlling the crystal size of monodispersed metal-organic frameworks: via separating the nucleation and growth. Chem Commun 54:584–587. https://doi.org/10.1039/c7cc08244d

    Article  CAS  Google Scholar 

  17. Diring S, Furukawa S, Takashima Y et al (2010) Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem Mater 22:4531–4538. https://doi.org/10.1021/cm101778g

    Article  CAS  Google Scholar 

  18. Martínez F, Leo P, Orcajo G et al (2018) Sustainable Fe-BTC catalyst for efficient removal of mehylene blue by advanced fenton oxidation. Catal Today 313:6–11. https://doi.org/10.1016/j.cattod.2017.10.002

    Article  CAS  Google Scholar 

  19. Araya T, Chen CC, Jia MK et al (2017) Selective degradation of organic dyes by a resin modified Fe-based metal-organic framework under visible light irradiation. Opt Mater (Amst) 64:512–523. https://doi.org/10.1016/j.optmat.2016.11.047

    Article  CAS  Google Scholar 

  20. Zaaba NI, Foo KL, Hashim U et al (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng 184:469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  21. Torres-Luna JA, Giraldo-Gómez GI, Sanabria-González NR, Carriazo JG (2019) Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite. Bull Mater Sci 42:137. https://doi.org/10.1007/s12034-019-1817-1

    Article  CAS  Google Scholar 

  22. Majano G, Ingold O, Yulikov M et al (2013) Room-temperature synthesis of Fe-BTC from layered iron hydroxides: the influence of precursor organisation. CrystEngComm 15:9885–9892. https://doi.org/10.1039/c3ce41366g

    Article  CAS  Google Scholar 

  23. Sciortino L, Alessi A, Messina F et al (2015) Structure of the FeBTC metal-organic framework: a model based on the local environment study. J Phys Chem C 119:7826–7830. https://doi.org/10.1021/acs.jpcc.5b01336

    Article  CAS  Google Scholar 

  24. Meng Q, Du C, Xu Z et al (2020) Siloxene-reduced graphene oxide composite hydrogel for supercapacitors. Chem Eng J 393:124684. https://doi.org/10.1016/j.cej.2020.124684

    Article  CAS  Google Scholar 

  25. Verma S, Dutta RK (2015) A facile method of synthesizing ammonia modified graphene oxide for efficient removal of uranyl ions from aqueous medium. RSC Adv 5:77192–77203. https://doi.org/10.1039/c5ra10555b

    Article  CAS  Google Scholar 

  26. Vuong GT, Pham MH, Do TO (2013) Direct synthesis and mechanism of the formation of mixed metal Fe 2Ni-MIL-88B. CrystEngComm 15:9694–9703. https://doi.org/10.1039/c3ce41453a

    Article  CAS  Google Scholar 

  27. Ai L, Zhang C, Li L, Jiang J (2014) Iron terephthalate metal-organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl Catal B Environ 148–149:191–200. https://doi.org/10.1016/j.apcatb.2013.10.056

    Article  CAS  Google Scholar 

  28. Azizi Vahed T, Naimi-Jamal MR, Panahi L (2018) (Fe)MIL-100-Met@alginate: a hybrid polymer-MOF for enhancement of metformin’s bioavailability and pH-controlled release. New J Chem 42:11137–11146. https://doi.org/10.1039/c8nj01946k

    Article  CAS  Google Scholar 

  29. Nguyen TT, Le GH, Le CH et al (2018) Atomic implantation synthesis of Fe-Cu/SBA-15 nanocomposite as a heterogeneous Fenton-like catalyst for enhanced degradation of DDT. Mater Res Express 5:115005. https://doi.org/10.1088/2053-1591/aadce1

    Article  CAS  Google Scholar 

  30. Liang R, Jing F, Shen L et al (2015) MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J Hazard Mater 287:364–372. https://doi.org/10.1016/j.jhazmat.2015.01.048

    Article  CAS  Google Scholar 

  31. Donohue MD, Aranovich GL (1998) Classification of Gibbs adsorption isotherms. Adv Colloid Interface Sci 76–77:137–152. https://doi.org/10.1016/S0001-8686(98)00044-X

    Article  Google Scholar 

  32. Ye C, Bando Y, Shen G, Golberg D (2006) Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J Phys Chem B 110:15146–15151. https://doi.org/10.1021/jp061874w

    Article  CAS  Google Scholar 

  33. Jo WK, Kumar S, Isaacs MA et al (2017) Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Appl Catal B Environ 201:159–168. https://doi.org/10.1016/j.apcatb.2016.08.022

    Article  CAS  Google Scholar 

  34. Zhang Y, Li G, Lu H et al (2014) Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials. RSC Adv 4:7594–7600. https://doi.org/10.1039/c3ra46706f

    Article  CAS  Google Scholar 

  35. Pham XN, Pham DT, Ngo HS et al (2020) Characterization and application of C-TiO2 doped cellulose acetate nanocomposite film for removal of Reactive Red-195. Chem Eng Commun. https://doi.org/10.1080/00986445.2020.1712375

    Article  Google Scholar 

  36. Hartmann M, Kullmann S, Keller H (2010) Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J Mater Chem 20:9002–9017. https://doi.org/10.1039/c0jm00577k

    Article  CAS  Google Scholar 

  37. Dutta K, Mukhopadhyay S, Bhattacharjee S, Chaudhuri B (2001) Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater 84:57–71. https://doi.org/10.1016/S0304-3894(01)00202-3

    Article  CAS  Google Scholar 

  38. Novikov AS, Kuznetsov ML, Pombeiro AJL et al (2013) Generation of HO• radical from hydrogen peroxide catalyzed by aqua complexes of the group III metals [M(H2O)n] 3+ (M = Ga, In, Sc, Y, or La): a theoretical study. ACS Catal 3:1195–1208. https://doi.org/10.1021/cs400155q

    Article  CAS  Google Scholar 

  39. Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5:40552–40577. https://doi.org/10.1039/c5ra02023a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Foundation for Science and Technology Development of Vietnam NAFOSTED [Grant Number 104.06-2019.23].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trinh Duy Nguyen or Tuan A. Vu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, H.T., Nguyen, M.B., Vu, T.M. et al. Synthesis and Application of Novel Nano Fe-BTC/GO Composites as Highly Efficient Photocatalysts in the Dye Degradation. Top Catal 63, 1046–1055 (2020). https://doi.org/10.1007/s11244-020-01289-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01289-w

Keywords

Navigation