Skip to main content
Log in

Atomic Layer Deposition (ALD) as a Way to Prepare New Mixed-Oxide Catalyst Supports: The Case of Alumina Addition to Silica-Supported Platinum for the Selective Hydrogenation of Cinnamaldehyde

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The case is made here for the power of using atomic layer deposition (ALD) as a way to induce changes in the nature of the oxides used as supports in many catalytic processes. ALD provides a route to grow thin films in a conformal way and with submonolayer thickness control, affording the creation of unique mixed-oxide structures with new reaction sites. This approach is exemplified here for the case of the hydrogenation of unsaturated aldehydes with platinum-based catalysts. Silica-supported catalysts were modified with thin alumina films, grown by ALD using trimethylaluminum(III) (TMA) and water, and their performance contrasted with pure Pt/SiO2 and Pt/Al2O3 samples as well as with catalysts previously reported by us made by silica ALD on Pt/Al2O3. The quality of the alumina films grown on Pt/SiO2 was first evaluated by using N2 adsorption–desorption isotherms in conjunction with SBA-15 as the support, a mesoporous material with well-defined 1D cylindrical pores. An initial deposition of approximately 1.5 Å of the alumina film per ALD cycle was estimated from those measurements, with retention of the narrow distribution of pore diameters indicative of homogeneous coverage throughout the length of the pores. The catalytic hydrogenation of cinnamaldehyde was then determined to be slower but more selective with silica supports compared to alumina. Addition of a half of a monolayer of alumina to Pt/SiO2 reduces the total activity, but only marginally. In exchange, the new mixed-oxide catalysts exhibit a higher selectivity toward the production of the desirable unsaturated alcohol at high conversions, and a lower activity for its subsequent hydrogenation to the saturated alcohol. These trends were associated with the formation of new Brønsted and Lewis acidic sites, possibly based on mixed Si–O–Al surface structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hutchings GJ (2005) Commentary on industrial processes. Philos Trans R Soc B 363(1829):985–987. https://doi.org/10.1098/rsta.2004.1531

    Article  CAS  Google Scholar 

  2. Smit B, Maesen TLM (2008) Towards a molecular understanding of shape selectivity. Nature 451(7179):671–678. https://doi.org/10.1038/nature06552

    Article  CAS  PubMed  Google Scholar 

  3. Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47(48):9212–9228. https://doi.org/10.1002/anie.200803181

    Article  CAS  Google Scholar 

  4. Zaera F (2010) The new materials science of catalysis: toward controlling selectivity by designing the structure of the active site. J Phys Chem Lett 1(3):621–627. https://doi.org/10.1021/jz9002586

    Article  CAS  Google Scholar 

  5. Corma A, García H (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 103(11):4307–4366. https://doi.org/10.1021/cr030680z

    Article  CAS  PubMed  Google Scholar 

  6. Wachs IE (2005) Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today 100(1–2):79–94. https://doi.org/10.1016/j.cattod.2004.12.019

    Article  CAS  Google Scholar 

  7. Frenzer G, Maier WF (2006) Amorphous porous mixed oxides: sol-gel ways to a highly versatile class of materials and catalysts. Annu Rev Mater Res 36:281–331. https://doi.org/10.1146/annurev.matsci.36.032905.092408

    Article  CAS  Google Scholar 

  8. Busca G (2007) Acid catalysts in industrial hydrocarbon chemistry. Chem Rev 107(11):5366–5410. https://doi.org/10.1021/cr068042e

    Article  CAS  PubMed  Google Scholar 

  9. Debecker DP, Hulea V, Mutin PH (2013) Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: a review. Appl Catal A 451:192–206. https://doi.org/10.1016/j.apcata.2012.11.002

    Article  CAS  Google Scholar 

  10. Diebold U, Pan J-M, Madey TE (1995) Ultrathin metal film growth on TiO2(110): an overview. Surf Sci 331:845–854. https://doi.org/10.1016/0039-6028(95)00124-7

    Article  Google Scholar 

  11. Hammer B (2006) Special sites at noble and late transition metal catalysts. Top Catal 37(1):3–16. https://doi.org/10.1007/s11244-006-0004-y

    Article  CAS  Google Scholar 

  12. Haruta M (2011) Spiers memorial lecture role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss 152:11–32. https://doi.org/10.1039/C1FD00107H

    Article  CAS  PubMed  Google Scholar 

  13. de la Peña O’Shea VA, Álvarez Galván MC, Platero Prats AE, Campos-Martin JM, Fierro JLG (2011) Direct evidence of the SMSI decoration effect: the case of Co/TiO2 catalyst. Chem Commun 47(25):7131–7133. https://doi.org/10.1039/c1cc10318k

    Article  CAS  Google Scholar 

  14. Wu B, Zheng N (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8(2):168–197. https://doi.org/10.1016/j.nantod.2013.02.006

    Article  CAS  Google Scholar 

  15. Mudiyanselage K, Senanayake SD, Feria L, Kundu S, Baber AE, Graciani J, Vidal AB, Agnoli S, Evans J, Chang R, Axnanda S, Liu Z, Sanz JF, Liu P, Rodriguez JA, Stacchiola DJ (2013) Importance of the metal–oxide interface in catalysis: in situ studies of the water–gas shift reaction by ambient-pressure X-Ray photoelectron spectroscopy. Angew Chem Int Ed 52(19):5101–5105. https://doi.org/10.1002/anie.201210077

    Article  CAS  Google Scholar 

  16. An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. J Am Chem Soc 135(44):16689–16696. https://doi.org/10.1021/ja4088743

    Article  CAS  PubMed  Google Scholar 

  17. Liu XY, Wang A, Zhang T, Mou C-Y (2013) Catalysis by gold: new insights into the support effect. Nano Today 8(4):403–416. https://doi.org/10.1016/j.nantod.2013.07.005

    Article  CAS  Google Scholar 

  18. Martínez C, Corma A (2011) Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord Chem Rev 255(13/14):1558–1580. https://doi.org/10.1016/j.ccr.2011.03.014

    Article  CAS  Google Scholar 

  19. Caillot M, Chaumonnot A, Digne M, van Bokhoven JA (2014) The variety of Brønsted acid sites in amorphous aluminosilicates and zeolites. J Catal 316:47–56. https://doi.org/10.1016/j.jcat.2014.05.002

    Article  CAS  Google Scholar 

  20. Hensen EJM, Poduval DG, Magusin PCMM, Coumans AE, van Veen JAR (2010) Formation of acid sites in amorphous silica-alumina. J Catal 269(1):201–218. https://doi.org/10.1016/j.jcat.2009.11.008

    Article  CAS  Google Scholar 

  21. Ungureanu A, Dragoi B, Hulea V, Cacciaguerra T, Meloni D, Solinas V, Dumitriu E (2012) Effect of aluminium incorporation by the “pH-adjusting” method on the structural, acidic and catalytic properties of mesoporous SBA-15. Microporous Mesoporous Mater 163:51–64. https://doi.org/10.1016/j.micromeso.2012.05.007

    Article  CAS  Google Scholar 

  22. Pidko EA, Almutairi SMT, Mezari B, Magusin PCMM, Hensen EJM (2013) Chemical vapor deposition of trimethylaluminum on dealuminated faujasite zeolite. ACS Catal 3(7):1504–1517. https://doi.org/10.1021/cs400181p

    Article  CAS  Google Scholar 

  23. González MD, Salagre P, Mokaya R, Cesteros Y (2014) Tuning the acidic and textural properties of ordered mesoporous silicas for their application as catalysts in the etherification of glycerol with isobutene. Catal Today 227:171–178. https://doi.org/10.1016/j.cattod.2013.10.029

    Article  CAS  Google Scholar 

  24. Mardkhe MK, Huang B, Bartholomew CH, Alam TM, Woodfield BF (2016) Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties. J Porous Mater 23(2):475–487. https://doi.org/10.1007/s10934-015-0101-z

    Article  CAS  Google Scholar 

  25. Valla M, Rossini AJ, Caillot M, Chizallet C, Raybaud P, Digne M, Chaumonnot A, Lesage A, Emsley L, van Bokhoven JA, Copéret C (2015) Atomic description of the interface between silica and alumina in aluminosilicates through dynamic nuclear polarization surface-enhanced NMR spectroscopy and first-principles calculations. J Am Chem Soc 137(33):10710–10719. https://doi.org/10.1021/jacs.5b06134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mouat AR, George C, Kobayashi T, Pruski M, van Duyne RP, Marks TJ, Stair PC (2015) Highly dispersed SiOx/Al2O3 catalysts illuminate the reactivity of isolated silanol sites. Angew Chem Int Ed 54(45):13346–13351. https://doi.org/10.1002/anie.201505452

    Article  CAS  Google Scholar 

  27. Ardagh MA, Bo Z, Nauert SL, Notestein JM (2016) Depositing SiO2 on Al2O3: a route to tunable Brønsted acid catalysts. ACS Catal 6(9):6156–6164. https://doi.org/10.1021/acscatal.6b01077

    Article  CAS  Google Scholar 

  28. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110(1):111–131. https://doi.org/10.1021/cr900056b

    Article  CAS  PubMed  Google Scholar 

  29. Detavernier C, Dendooven J, Pulinthanathu Sree S, Ludwig KF, Martens JA (2011) Tailoring nanoporous materials by atomic layer deposition. Chem Soc Rev 40(11):5242–5253

    Article  CAS  Google Scholar 

  30. Elam JW, Dasgupta NP, Prinz FB (2011) ALD for clean energy conversion, utilization, and storage. MRS Bull 36(11):899–906

    Article  CAS  Google Scholar 

  31. Zaera F (2013) Nanostructured materials for applications in heterogeneous catalysis. Chem Soc Rev 42(7):2746–2762. https://doi.org/10.1039/c2cs35261c

    Article  CAS  PubMed  Google Scholar 

  32. Lu J, Elam JW, Stair PC (2016) Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf Sci Rep 71(2):410–472. https://doi.org/10.1016/j.surfrep.2016.03.003

    Article  CAS  Google Scholar 

  33. Singh JA, Yang N, Bent SF (2017) Nanoengineering heterogeneous catalysts by atomic layer deposition. Annu Rev Chem Biomol Eng 8(1):41–62. https://doi.org/10.1146/annurev-chembioeng-060816-101547

    Article  PubMed  Google Scholar 

  34. Meng X, Wang X, Geng D, Ozgit-Akgun C, Schneider N, Elam JW (2017) Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. Mater Horiz 4(2):133–154. https://doi.org/10.1039/C6MH00521G

    Article  CAS  Google Scholar 

  35. Schumacher M, Baumann PK, Seidel T (2006) AVD and ALD as two complementary technology solutions for next generation dielectric and conductive thin-film processing. Chem Vap Depos 12(2–3):99–108. https://doi.org/10.1002/cvde.200500027

    Article  CAS  Google Scholar 

  36. Levitin G, Hess DW (2011) Surface reactions in microelectronics process technology. Annu Rev Chem Biomol Eng 2(1):299–324. https://doi.org/10.1146/annurev-chembioeng-061010-114249

    Article  CAS  PubMed  Google Scholar 

  37. Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2(11):749–754. https://doi.org/10.1038/nmat1000

    Article  CAS  PubMed  Google Scholar 

  38. Kim H (2003) Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing. J Vac Sci Technol, B 21(6):2231–2261. https://doi.org/10.1116/1.1622676

    Article  CAS  Google Scholar 

  39. Ritala M (2004) Atomic layer deposition. In: Houssa M (ed) High-k Gate Dielectrics. Series in Materials Science and Engineering. Institute of Physics, Bristol; Philadelphia, pp 17–64

  40. Zaera F (2012) The surface chemistry of atomic layer depositions of solid thin films. J Phys Chem Lett 3(10):1301–1309. https://doi.org/10.1021/jz300125f

    Article  CAS  PubMed  Google Scholar 

  41. Zaera F (2013) Mechanisms of surface reactions in thin solid film chemical deposition processes. Coord Chem Rev 257(23–24):3177–3191. https://doi.org/10.1016/j.ccr.2013.04.006

    Article  CAS  Google Scholar 

  42. Leskelä M, Ritala M (2003) Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed 42(45):5548–5554. https://doi.org/10.1002/anie.200301652

    Article  CAS  Google Scholar 

  43. Weng Z, Z-h Chen, Qin X, Zaera F (2018) Sub-monolayer control of the growth of oxide films on mesoporous materials. J Mater Chem A 6(36):17548–17558. https://doi.org/10.1039/C8TA05431B

    Article  CAS  Google Scholar 

  44. Vjunov A, Fulton JL, Huthwelker T, Pin S, Mei D, Schenter GK, Govind N, Camaioni DM, Hu JZ, Lercher JA (2014) Quantitatively probing the Al distribution in zeolites. J Am Chem Soc 136(23):8296–8306. https://doi.org/10.1021/ja501361v

    Article  CAS  PubMed  Google Scholar 

  45. Armor JN (2011) A history of industrial catalysis. Catal Today 163(1):3–9. https://doi.org/10.1016/j.cattod.2009.11.019

    Article  CAS  Google Scholar 

  46. Leydier F, Chizallet C, Chaumonnot A, Digne M, Soyer E, Quoineaud A-A, Costa D, Raybaud P (2011) Brønsted acidity of amorphous silica–alumina: the molecular rules of proton transfer. J Catal 284(2):215–229. https://doi.org/10.1016/j.jcat.2011.08.015

    Article  CAS  Google Scholar 

  47. Caillot M, Chaumonnot A, Digne M, Bokhoven JAV (2013) Quantification of Brønsted acid sites of grafted amorphous silica-alumina compounds and their turnover frequency in m-xylene isomerization. ChemCatChem 5(12):3644–3656. https://doi.org/10.1002/cctc.201300560

    Article  CAS  Google Scholar 

  48. Caillot M, Chaumonnot A, Digne M, Poleunis C, Debecker DP, van Bokhoven JA (2014) Synthesis of amorphous aluminosilicates by grafting: tuning the building and final structure of the deposit by selecting the appropriate synthesis conditions. Microporous Mesoporous Mater 185:179–189. https://doi.org/10.1016/j.micromeso.2013.10.032

    Article  CAS  Google Scholar 

  49. Finocchio E, Busca G, Rossini S, Cornaro U, Piccoli V, Miglio R (1997) FT-IR characterization of silicated aluminas, active olefin skeletal isomerization catalysts. Catal Today 33(1):335–352. https://doi.org/10.1016/S0920-5861(96)00106-X

    Article  CAS  Google Scholar 

  50. Caillot M, Chaumonnot A, Digne M, Van Bokhoven JA (2014) Creation of Brønsted acidity by grafting aluminum isopropoxide on silica under controlled conditions: determination of the number of Brønsted Sites and their turnover frequency for m-xylene isomerization. ChemCatChem 6(3):832–841. https://doi.org/10.1002/cctc.201300824

    Article  CAS  Google Scholar 

  51. Hansford RC (1947) Mechanism of catalytic cracking. Ind Eng Chem 39(7):849–852. https://doi.org/10.1021/ie50451a012

    Article  CAS  Google Scholar 

  52. Thomas CL (1949) Chemistry of cracking catalysts. Ind Eng Chem 41(11):2564–2573. https://doi.org/10.1021/ie50479a042

    Article  CAS  Google Scholar 

  53. Tamele MW (1950) Chemistry of the surface and the activity of alumina-silica cracking catalyst. Discuss Faraday Soc 8:270–279. https://doi.org/10.1039/DF9500800270

    Article  Google Scholar 

  54. Xu B, Sievers C, Lercher JA, van Veen JAR, Giltay P, Prins R, van Bokhoven JA (2007) Strong Brønsted acidity in amorphous silica–aluminas. J Phys Chem C 111(32):12075–12079. https://doi.org/10.1021/jp073677i

    Article  CAS  Google Scholar 

  55. Poduval DG, van Veen JAR, Rigutto MS, Hensen EJM (2010) Bronsted acid sites of zeolitic strength in amorphous silica-alumina. Chem Commun 46(20):3466–3468. https://doi.org/10.1039/C000019A

    Article  CAS  Google Scholar 

  56. Hensen EJM, Poduval DG, Degirmenci V, Ligthart DAJM, Chen W, Maugé F, Rigutto MS, van Veen JAR (2012) Acidity characterization of amorphous silica-alumina. J Phys Chem C 116(40):21416–21429. https://doi.org/10.1021/jp309182f

    Article  CAS  Google Scholar 

  57. Crépeau G, Montouillout V, Vimont A, Mariey L, Cseri T, Maugé F (2006) Nature, structure and strength of the acidic sites of amorphous silica alumina: an IR and NMR study. J Phys Chem B 110(31):15172–15185. https://doi.org/10.1021/jp062252d

    Article  CAS  PubMed  Google Scholar 

  58. Huang J, van Vegten N, Jiang Y, Hunger M, Baiker A (2010) Increasing the Brønsted acidity of flame-derived silica/alumina up to zeolitic strength. Angew Chem Int Ed 49(42):7776–7781. https://doi.org/10.1002/anie.201003391

    Article  CAS  Google Scholar 

  59. Xiong G, Elam JW, Feng H, Han CY, Wang HH, Iton LE, Curtiss LA, Pellin MJ, Kung M, Kung H, Stair PC (2005) Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes. J Phys Chem B 109(29):14059–14063. https://doi.org/10.1021/jp0503415

    Article  CAS  PubMed  Google Scholar 

  60. Verheyen E, Pulinthanathu Sree S, Thomas K, Dendooven J, De Prins M, Vanbutsele G, Breynaert E, Gilson JP, Kirschhock CEA, Detavernier C, Martens JA (2014) Catalytic activation of OKO zeolite with intersecting pores of 10- and 12-membered rings using atomic layer deposition of aluminium. Chem Commun 50(35):4610–4612. https://doi.org/10.1039/C3CC49028A

    Article  CAS  Google Scholar 

  61. Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97(12):121301. https://doi.org/10.1063/1.1940727

    Article  CAS  Google Scholar 

  62. Wind RA, George SM (2009) Quartz crystal microbalance studies of Al2O3 atomic layer deposition using trimethylaluminum and water at 125 & #xB0;C. J Phys Chem A 114(3):1281–1289. https://doi.org/10.1021/jp9049268

    Article  CAS  Google Scholar 

  63. Lakomaa EL, Root A, Suntola T (1996) Surface reactions in Al2O3 growth from trimethylaluminium and water by atomic layer epitaxy. Appl Surf Sci 107:107–115. https://doi.org/10.1016/S0169-4332(96)00513-2

    Article  CAS  Google Scholar 

  64. Puurunen RL, Root A, Haukka S, Iiskola EI, Lindblad M, Krause AOI (2000) IR and NMR study of the chemisorption of ammonia on trimethylaluminum-modified silica. J Phys Chem B 104(28):6599–6609. https://doi.org/10.1021/jp000454i

    Article  CAS  Google Scholar 

  65. Sree SP, Dendooven J, Koranyi TI, Vanbutsele G, Houthoofd K, Deduytsche D, Detavernier C, Martens JA (2011) Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement. Catal Sci Technol 1(2):218–221. https://doi.org/10.1039/C0CY00056F

    Article  CAS  Google Scholar 

  66. Zemtsova EG, Arbenin AY, Plotnikov AF, Smirnov VM (2015) Pore radius fine tuning of a silica matrix (MCM-41) based on the synthesis of alumina nanolayers with different thicknesses by atomic layer deposition. J Vac Sci Technol, A 33(2):021519. https://doi.org/10.1116/1.4907989

    Article  CAS  Google Scholar 

  67. Feng H, Lu J, Stair P, Elam J (2011) Alumina over-coating on Pd nanoparticle catalysts by atomic layer deposition: enhanced stability and reactivity. Catal Lett 141(4):512–517. https://doi.org/10.1007/s10562-011-0548-8

    Article  CAS  Google Scholar 

  68. Lu J, Elam JW, Stair PC (2013) Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc Chem Res 46(8):1806–1815. https://doi.org/10.1021/ar300229c

    Article  CAS  PubMed  Google Scholar 

  69. Mäki-Arvela P, Hájek J, Salmi T, Murzin DY (2005) Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl Catal A 292(1–2):1–49. https://doi.org/10.1016/j.apcata.2005.05.045

    Article  CAS  Google Scholar 

  70. Yuan Y, Yao S, Wang M, Lou S, Yan N (2013) Recent progress in chemoselective hydrogenation of α, β-unsaturated aldehyde to unsaturated alcohol over nanomaterials. Curr Org Chem 17(4):400–413. https://doi.org/10.1016/j.cattod.2011.1009.1016

    Article  CAS  Google Scholar 

  71. Ji X, Niu X, Li B, Han Q, Yuan F, Zaera F, Zhu Y, Fu H (2014) Selective hydrogenation of cinnamaldehyde to cinnamal alcohol over platinum/graphene catalysts. ChemCatChem 6:3246–3253. https://doi.org/10.1002/cctc.201402573

    Article  CAS  Google Scholar 

  72. Zhu Y, Zaera F (2014) Selectivity in the catalytic hydrogenation of cinnamaldehyde promoted by Pt/SiO2 as a function of metal nanoparticle size. Catal Sci Technol 4(4):955–962. https://doi.org/10.1039/C3CY01051A

    Article  CAS  Google Scholar 

  73. Claus P, Schimpf S, Schödel R, Kraak P, Mörke W, Hönicke D (1997) Hydrogenation of crotonaldehyde on Pt/TiO2 catalysts: influence of the phase composition of titania on activity and intramolecular selectivity. Appl Catal A 165(1–2):429–441. https://doi.org/10.1016/S0926-860X(97)00224-X

    Article  CAS  Google Scholar 

  74. Kijeński J, Winiarek P, Paryjczak T, Lewicki A, Mikołajska A (2002) Platinum deposited on monolayer supports in selective hydrogenation of furfural to furfuryl alcohol. Appl Catal A 233(1–2):171–182. https://doi.org/10.1016/S0926-860X(02)00140-0

    Article  Google Scholar 

  75. Weng Z, Zaera F (2018) Sub-monolayer control of mixed-oxide support composition in catalysts via atomic layer deposition: selective hydrogenation of cinnamaldehyde promoted by (SiO2-ALD)-Pt/Al2O3. ACS Catal 8:8513–8524. https://doi.org/10.1021/acscatal.8b02431

    Article  CAS  Google Scholar 

  76. Tiznado H, Fuentes S, Zaera F (2004) Infrared study of CO adsorbed on Pd/Al2O3-ZrO2. Effect of zirconia added by impregnation. Langmuir 20(24):10490–10497. https://doi.org/10.1021/la049606h

    Article  CAS  PubMed  Google Scholar 

  77. Li Y, Zaera F (2015) Sensitivity of the glycerol oxidation reaction to the size and shape of the platinum nanoparticles in Pt/SiO2 catalysts. J Catal 326:116–126. https://doi.org/10.1016/j.jcat.2015.04.009

    Article  CAS  Google Scholar 

  78. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances I computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  79. Groner MD, Fabreguette FH, Elam JW, George SM (2004) Low-temperature Al2O3 atomic layer deposition. Chem Mater 16(4):639–645. https://doi.org/10.1021/cm0304546

    Article  CAS  Google Scholar 

  80. Cassidy DE, DeSisto WJ (2012) atomic layer deposition-modified ordered mesoporous silica membranes. Chem Vap Deposition 18(1–3):22–26. https://doi.org/10.1002/cvde.201106931

    Article  CAS  Google Scholar 

  81. Gallezot P, Richard D (1998) Selective hydrogenation of α, β-unsaturated aldehydes. Catal Rev-Sci Technol 40(1–2):81–126. https://doi.org/10.1080/01614949808007106

    Article  CAS  Google Scholar 

  82. Zaera F (2017) The surface chemistry of metal-based hydrogenation catalysis. ACS Catal 7:4947–4967. https://doi.org/10.1021/acscatal.7b01368

    Article  CAS  Google Scholar 

  83. Giroir-Fendler A, Richard D, Gallezot P (1988) Selectivity in cinnamaldehyde hydrogenation of group-Viii metals supported on graphite and carbon. In: Guisnet M, Barrault J, Bouchoule C, Duprez D, Montassier C, Pérot G (eds) Studies in surface science and catalysis, vol 41. Elsevier, Amsterdam, pp 171–178

    Google Scholar 

  84. Ponec V (1997) On the role of promoters in hydrogenations on metals; α, β-unsaturated aldehydes and ketones. Appl Catal A 149(1):27–48. https://doi.org/10.1016/S0926-860X(96)00250-5

    Article  CAS  Google Scholar 

  85. Claus P (1998) Selective hydrogenation of α, β-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Top Catal 5(1–4):51–62. https://doi.org/10.1023/A:1019177330810

    Article  CAS  Google Scholar 

  86. Schoenbaum CA, Schwartz DK, Medlin JW (2014) Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc Chem Res 47(4):1438–1445. https://doi.org/10.1021/ar500029y

    Article  CAS  PubMed  Google Scholar 

  87. Arai M, K-i Usui, Nishiyama Y (1993) Preparation of alumina-supported platinum catalyst at ambient temperature for selective synthesis of cinnamyl alcohol by liquid-phase cinnamaldehyde hydrogenation. J Chem Soc, Chem Commun 24:1853–1854. https://doi.org/10.1039/C39930001853

    Article  Google Scholar 

  88. Arai M, Obata A, Usui K, Shirai M, Nishiyama Y (1996) Activity for liquid-phase hydrogenation of α, β-unsaturated aldehydes of supported platinum catalysts prepared through low-temperature reduction. Appl Catal A 146(2):381–389. https://doi.org/10.1016/S0926-860X(96)00188-3

    Article  CAS  Google Scholar 

  89. Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids Surf A 190(3):261–274. https://doi.org/10.1016/S0927-7757(01)00690-2

    Article  CAS  Google Scholar 

  90. Derouane EG, Védrine JC, Pinto RR, Borges PM, Costa L, Lemos MANDA, Lemos F, Ribeiro FR (2013) The Acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal Rev 55(4):454–515. https://doi.org/10.1080/01614940.2013.822266

    Article  CAS  Google Scholar 

  91. Phung TK, Lagazzo A, Rivero Crespo MÁ, Sánchez Escribano V, Busca G (2014) A study of commercial transition aluminas and of their catalytic activity in the dehydration of ethanol. J Catal 311:102–113. https://doi.org/10.1016/j.jcat.2013.11.010

    Article  CAS  Google Scholar 

  92. Parry EP (1963) An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J Catal 2(5):371–379. https://doi.org/10.1016/0021-9517(63)90102-7

    Article  CAS  Google Scholar 

  93. Hughes TR, White HM (1967) A study of the surface structure of decationized Y zeolite by quantitative infrared spectroscopy. J Phys Chem 71(7):2192–2201. https://doi.org/10.1021/j100866a035

    Article  CAS  Google Scholar 

  94. Liu X (2008) Drifts study of surface of Γ-Alumina and its dehydroxylation. J Phys Chem C 112(13):5066–5073. https://doi.org/10.1021/jp711901s

    Article  CAS  Google Scholar 

  95. Dong Y, Zaera F (2018) Selectivity in hydrogenation catalysis with unsaturated aldehydes: parallel versus sequential steps. J Phys Chem Lett 9:1301–1306. https://doi.org/10.1021/acs.jpclett.8b00173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by a Grant from the U.S. National Science Foundation, Division of Chemistry, under Award No. NSF-1660433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zaera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Invited contribution to the special issue entitled “6th San Luis Conference on Surfaces, Interfaces and Catalysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Z., Zaera, F. Atomic Layer Deposition (ALD) as a Way to Prepare New Mixed-Oxide Catalyst Supports: The Case of Alumina Addition to Silica-Supported Platinum for the Selective Hydrogenation of Cinnamaldehyde. Top Catal 62, 838–848 (2019). https://doi.org/10.1007/s11244-019-01163-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01163-4

Keywords

Navigation