Skip to main content
Log in

Mapping Support Interactions in Copper Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Intrinsic activity is often reported as a Turnover Frequency (TOF) of an active phase and is determined from an overall activity and a specific active surface area. The latter parameter is often determined by selective chemisorption techniques, but (strong) metal-support interactions, (S)MSI, between the metal and the carrier in an interplay with the nature of the probe molecules may distort the measurements. Here, a double-area-estimation approach is used for fast and accurate evaluation of (S)MSI effects in supported Cu catalysts: Firstly, baselines for the Temperature Programmed Desorption of Hydrogen (H2-TPD) and Reactive Frontal Chromatography by Nitrous oxide (N2O-RFC) methods commonly used to titrate Cu areas were established by comparison with Brunauer-Emmett-Teller (BET) surface areas using a series of pure Cu catalysts. Pure unsupported Cu samples, free from support interactions, were used to determine the stoichiometries between the probe molecules, H2 and N2O, and Cu surface atoms. This resulted in values of 2.08 ± 0.14:1 (Cu:O) and 2.81 ± 0.09:1 (Cu:H2). Cu on a wide range of support materials were subsequently analyzed by H2-TPD and N2O-RFC and benchmarked according to the unsupported Cu reference. This was done to study metal support interactions and increase the understanding of the nature of the interactions between Cu and different carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vesborg PCK, Chorkendorff I, Knudsen I, Balmes O, Nerlov J, Molenbroek AM, Clausen BS, Helveg S (2009) Transient behavior of Cu/ZnO-based methanol synthesis catalysts. J Catal 262:65–72

    Article  CAS  Google Scholar 

  2. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394. https://doi.org/10.1021/ar00143a001

    Article  CAS  Google Scholar 

  3. Haller GL, Resasco DE (1989) Metal–support interaction: group VIII metals and reducible oxides. Adv Catal 36:173.235. https://doi.org/10.1016/S0360-0564(08)60018-8

    Article  Google Scholar 

  4. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF, Rodriguez JA (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science. 345:546–550. https://doi.org/10.1126/science.1253057

    Article  CAS  PubMed  Google Scholar 

  5. Coq B (2000) Metal-support interaction in catalysis: generalities, basic concepts and some examples in hydrogenation and hydrogenolysis reactions. Met Interact Chem Phys Biol 49–71

  6. Hansen PL, Wagner JB, Helveg S, Rostrup-nielsen JR, Clausen BS, Topsoe H (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science. 295:2053–2056. https://doi.org/10.1126/science.1069325

    Article  CAS  PubMed  Google Scholar 

  7. Berndt H, Briehn V, Evert S (1992) Reliability of pulse-chromatographic nitrous oxide titrations of the copper surface area on Cu-ZnO-MeOx catalysts in connection with the characterization of their thermostability. Appl Catal A Gen 86:65–69. https://doi.org/10.1016/0926-860X(92)85138-2

    Article  CAS  Google Scholar 

  8. Muhler M, Nielsen LP, Tornqvist E, Clausen BS, Topsoe H (1992) Temperature-programmed desorption of H2 as a tool to determine metal surface areas of Cu catalysts. Catal Lett 14:241–249. https://doi.org/10.1007/BF00769661

    Article  CAS  Google Scholar 

  9. Wilmer H, Hinrichsen O (2002) Dynamical changes in Cu/ZnO/Al2O3 catalysts. Catal Lett 82:117–122. https://doi.org/10.1023/A:1020560628950

    Article  CAS  Google Scholar 

  10. Kuld S, Conradsen C, Moses PG, Chorkendorff I, Sehested J (2014) Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. Angew Chem Int Ed Engl 53:5941–5945. https://doi.org/10.1002/anie.201311073

    Article  CAS  PubMed  Google Scholar 

  11. Kuld S, Thorhauge M, Falsig H, Elkjær CF, Helveg S, Chorkendorff I, Sehested J (2016) Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352:969–974. https://doi.org/10.1126/science.aaf0718

    Article  CAS  PubMed  Google Scholar 

  12. Fichtl MB, Schumann J, Kasatkin I, Jacobsen N, Behrens M, Schlogl R, Muhler M, Hinrichsen O (2014) Counting of oxygen defects versus metal surface sites in methanol synthesis catalysts by different probe molecules, Angew. Chemie Int Ed 53:7043–7047. https://doi.org/10.1002/anie.201400575

    Article  CAS  Google Scholar 

  13. van Den Berg R, Prieto G, Korpershoek G, van der wal L, J va. Bunningen, Arnoldus S, Lægsgaard-Jørgensen, PEde Jongh, KP, de Jong (2016) Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nat Commun. https://doi.org/10.1038/ncomms13057

    Article  PubMed  PubMed Central  Google Scholar 

  14. Behrens M, Studt F, Kasatkin I, Kuhl S, Havecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Norskov JK, Schlogl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897. https://doi.org/10.5061/dryad.rd70f

    Article  CAS  PubMed  Google Scholar 

  15. Lunkenbein T, Schumann J, Behrens M, Schlögl R, Willinger MG (2015) Formation of a ZnO overlayer in industrial Cu/ZnO/Al2 O3 catalysts induced by strong metal-support interactions. Angew Chem Int Ed Engl 54:4544–4548. https://doi.org/10.1002/ange.201411581

    Article  CAS  PubMed  Google Scholar 

  16. Schlogl R, Catalysis H (2015) Angew Chemie Int Ed 54:3465–3520. https://doi.org/10.1002/anie.201410738

    Article  CAS  Google Scholar 

  17. Chinchen GC, Hay CM, Vandervell HD, Waugh KC (1987) The measurement of copper surface areas by reactive frontal chromatography. J Catal 103:79–86. https://doi.org/10.1016/0021-9517(87)90094-7

    Article  CAS  Google Scholar 

  18. Evans JW, Wainwright MS, Bridgewater AJ, Young DJ (1983) On the determination of copper surface area by reaction with nitrous oxide. Appl Catal 7:75–83. https://doi.org/10.1016/0166-9834(83)80239-5

    Article  CAS  Google Scholar 

  19. Scholten JJ, Konvalinka JA (1969) Reaction of nitrous oxide with copper surfaces. Application to the determination of free-copper surface areas. Trans Faraday Soc 65:2465–2473. https://doi.org/10.1039/TF9696502465

    Article  CAS  Google Scholar 

  20. Narita K, Takezawa N, Kobayashi H, Toyoshima I (1982) Adsorption of nitrous oxide on metallic copper catalysts. React Kinet Catal Lett 19:91–94. https://doi.org/10.1007/BF02065064

    Article  CAS  Google Scholar 

  21. Luys MJ, Van Oeffelt PH, Brouwer WG, Pijpers AP, Sscholten JJ (1989) Surface and sub-surface oxidation of copper and supported copper catalysts by nitrous oxide. Appl Catal 46:161–173. https://doi.org/10.1016/S0166-9834(00)81401-3

    Article  CAS  Google Scholar 

  22. Habraken FHP, Mesters CMAM, Bootsma GA (1980) The adsorption and incorporation of oxygen on Cu(100) and its reaction with carbon monoxide; comparison with Cu(111) and Cu(110). Surf Sci 97:264–282. https://doi.org/10.1016/0039-6028(80)90118-1

    Article  CAS  Google Scholar 

  23. King DS, Nix RM (1996) Thermal stability and reducibility of ZnO and Cu/ZnO catalysts. J Catal 160:76–83. https://doi.org/10.1006/JCAT.1996.0125

    Article  CAS  Google Scholar 

  24. Jung K-D, Joo O-S, Han S-H (2000) Structural change of Cu/ZnO by reduction of ZnO in Cu/ZnO with methanol. Catal Lett 68:49. https://doi.org/10.1023/A:1019027302428. 49–54.

    Article  CAS  Google Scholar 

  25. Roberts DL, Griffin GL (1988) Temperature-programmed desorption and infrared study of CO and H2 adsorption on CuZnO catalysts. J Catal 110:117–126. https://doi.org/10.1016/0021-9517(88)90302-8

    Article  CAS  Google Scholar 

  26. Tabatabaei J, Sakakini BH, Watson MJ, Waugh KC (1999) The detailed kinetics of the desorption of hydrogen from polycrystalline copper catalysts. Catal Lett 59:143–149. https://doi.org/10.1023/A:1019080823616

    Article  CAS  Google Scholar 

  27. Anger G, Winkler A, Rendulic KD (1989) Adsorption and desorption kinetics in the systems H2/Cu(111), H2/Cu(110) and H2/Cu(100). Surf Sci 220:1–17. https://doi.org/10.1016/0039-6028(89)90459-7

    Article  CAS  Google Scholar 

  28. Luo MF, Hu G, Lee M (2007) Surface structures of atomic hydrogen adsorbed on Cu(111) surface studied by density-functional-theory calculations. Surf Sci 601:1461–1466. https://doi.org/10.1016/J.SUSC.2006.12.077

    Article  CAS  Google Scholar 

  29. Rieder KH, Stocker W (1986) Hydrogen-induced subsurface reconstruction of Cu(110). Phys Rev Lett 57:2548–2551. https://doi.org/10.1103/PhysRevLett.57.2548

    Article  CAS  PubMed  Google Scholar 

  30. Lee G, Poker DB, Zehner DM, Plummer EW (1996) Coverage and structure of deuterium on Cu(111). Surf Sci 357–358:717–720. https://doi.org/10.1016/0039-6028(96)00252-X

    Article  Google Scholar 

  31. Mccash EM, Parker SF, Chesters MA (1989) The adsorption of atomic hydrogen on Cu(111) investigated by reflection—adsorption infrared spectroscopy, electron energy loss spectroscopy and low energy electron diffraction. Surf Sci 215:363–377. https://doi.org/10.1016/0039-6028(89)90266-5

    Article  CAS  Google Scholar 

  32. Fichtl MB, Hinrichsen O (2014) On the temperature programmed desorption of hydrogen from polycrystalline copper. Catal Lett 144:2114–2120. https://doi.org/10.1007/s10562-014-1384-4

    Article  CAS  Google Scholar 

  33. O Hinrichsen, T Genger, M Muhler (2000) Chemisorption of N2O and H2 for the surface determination of copper catalysts. Chem. Eng. Technol. 23:956–959. https://doi.org/10.1002/1521-4125(200011)23:11%3C956::AID-CEAT956%3E3.0.CO;2-L.

    Article  CAS  Google Scholar 

  34. Genger T, Hinrichsen O, Muhler M (1999) The temperature-programmed desorption of hydrogen from copper surfaces. Catal Lett 59:137–141. https://doi.org/10.1023/A:1019076722708

    Article  CAS  Google Scholar 

  35. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Strong interactions in supported-metal catalysts. Science 211:1121–1125

    Article  CAS  PubMed  Google Scholar 

  36. Dandekar A, Vannice MA (1998) Determination of the dispersion and surface oxidation states of supported Cu catalysts. J Catal 178:621–639. https://doi.org/10.1006/jcat.1998.2190

    Article  CAS  Google Scholar 

  37. Dandekar A, Baker RT, Vannice MA (1999) Carbon-supported copper catalysts: II. crotonaldehyde hydrogenation. J Catal 184:421–439. https://doi.org/10.1006/jcat.1998.2357

    Article  CAS  Google Scholar 

  38. Knapp R, Wyrzgol SA, Jentys A, Lercher JA (2010) Water–gas shift catalysts based on ionic liquid mediated supported Cu nanoparticles. J Catal 276:280–291. https://doi.org/10.1016/j.jcat.2010.09.019

    Article  CAS  Google Scholar 

  39. Caldas PC, Gallo JM, Lopez-Castillo A, Zanchet D, Bueno JM (2017) The structure of the Cu–CuO sites determines the catalytic activity of Cu nanoparticles. ACS Catal 7:2419–2424. https://doi.org/10.1021/acscatal.6b03642

    Article  CAS  Google Scholar 

  40. Emmett PH, Brunauer S (1937) The use of low temperature van der Waals adsorption isotherms in determining the surface area of iron synthetic ammonia catalysts. J Am Chem Soc 59:1553–1564. https://doi.org/10.1021/ja01287a041

    Article  CAS  Google Scholar 

  41. Martin O, Perez-ramirez J, New and revisited insights into the promotion of methanol synthesis catalysts by CO2 (2013) Catal Sci Technol. https://doi.org/10.1039/c3cy00573a

    Article  Google Scholar 

  42. Zhu Y, Kong X, Yin J, You R, Zhang B, Zheng H, Wen X, Zhu Y, Li Y (2017) Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. J Catal 353:315–324. https://doi.org/10.1016/J.JCAT.2017.07.030

    Article  CAS  Google Scholar 

  43. Emmez E, Yang B, Shaikutdinov S, Freund H-J (2014) Permeation of a single-layer SiO2 membrane and chemistry in confined space. J Phys Chem C 118(50):29034–29042

    Article  CAS  Google Scholar 

  44. Delk II FS, Vavere A (1983) Anomalous interactions in Cu/TiO2 catalysts. J Catal 85:380–388. https://doi.org/10.1016/0021-9517(84)90227-6

    Article  Google Scholar 

  45. Kattel S, Ramirez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355:1296–1299. https://doi.org/10.1126/science.aal3573

    Article  CAS  PubMed  Google Scholar 

  46. Schumann J, Krohnert J, Frei E, Schlogl R, Trunschke A (2017) IR-spectroscopic study on the interface of Cu-based methanol synthesis catalysts: evidence for the formation of a ZnO overlayer. Top Catal 60:1735–1743. https://doi.org/10.1007/s11244-017-0850-9

    Article  CAS  Google Scholar 

  47. Behrens M (2016) Promoting the synthesis of methanol: understanding the requirements for an industrial catalyst for the conversion of CO2. Angew Chemie Int Ed 55:14906–14908. https://doi.org/10.1002/anie.201607600

    Article  CAS  Google Scholar 

  48. Liu L, Gao F, Zhao H, Li Y (2013) Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl Catal B Environ 134–135:349–358. https://doi.org/10.1016/j.apcatb.2013.01.040

    Article  CAS  Google Scholar 

  49. Sato AG, Volanti DP, Meira DM, Damyanova S, Longo E, Bueno JMC (2013) Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion. J Catal 307:1–17. https://doi.org/10.1016/j.jcat.2013.06.022

    Article  CAS  Google Scholar 

  50. van Den Berg R, Parmentier TE, Elkjær CF, Gommes CJ, Sehested J, Helveg S, de Jongh PE, de Jong KP (2015) Support functionalization To retard ostwald ripening in copper methanol synthesis catalysts. ACS Catal 5:4439–4448. https://doi.org/10.1021/acscatal.5b00833

    Article  CAS  Google Scholar 

  51. Schlögl R, Catalysis H (2015) Angew Chemie Int Ed 54:3465–3520. https://doi.org/10.1002/anie.201410738

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ramchandra R. Tiruvalam, Haldor Topsøe is acknowledged for doing the STEM analysis of the Cu/active carbon sample and Petra E. de Jongh and Krijn P. de Jong, Utrecht University for supervising the preparation of a selection of supported Cu samples. JMC and ADJ acknowledge the Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Sehested.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 722 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, R., Kuld, S., van den Berg, R. et al. Mapping Support Interactions in Copper Catalysts. Top Catal 62, 649–659 (2019). https://doi.org/10.1007/s11244-019-01150-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01150-9

Keywords

Navigation