Skip to main content
Log in

Atomic Ordering and Sn Segregation in Pt–Sn Nanoalloys Supported on CeO2 Thin Films

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The stability and atomic ordering in Pt–Sn nanoalloys supported on CeO2 thin films have been studied by means of synchrotron radiation photoelectron spectroscopy and density functional calculations. Using CO molecules as a probe, we explored the development of the surface structure of supported Pt–Sn nanoalloys with respect to a reference Pt/CeO2 model system. We found a significant decrease in the density of CO adsorption sites on supported Pt–Sn nanoalloys caused by Sn segregation to the surface upon annealing. Additionally, we found that atomic ordering in Pt–Sn nanoalloys is driven by the balance between the surface segregation energy of Sn atoms and the energy of heteroatomic bond formation. Our calculations demonstrate a clear tendency for Sn segregation to the nanoalloy surface. For Pt105Sn35 and Pt1097Sn386 nanoparticles, we calculated a surface stoichiometry of Pt2Sn which is only slightly dependent on temperature in thermodynamic equilibrium. The analysis of Bader charges in Pt–Sn nanoalloys revealed a strong correlation between the charge and the coordination number of Sn atoms with respect to Pt neighbors. In particular, the magnitude of the charge transfer from Sn to Pt increases as a function of the Sn coordination number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  2. Wang X, Altmann L, Stöver J, Zielasek V, Bäumer M, Al-Shamery K, Borchert H, Parisi J, Kolny-Olesiak J (2013) Chem Mater 25:1400–1407

    Article  CAS  Google Scholar 

  3. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Chem Soc Rev 41:8099–8139

    Article  CAS  Google Scholar 

  4. Yu W, Porosoff MD, Chen JG (2012) Chem Rev 112:5780–5817

    Article  CAS  Google Scholar 

  5. Antolini E (2007) J Power Sources 170:1–12

    Article  CAS  Google Scholar 

  6. Lykhach Y, Kozlov SM, Skála T, Tovt A, Stetsovych V, Tsud N, Dvořák F, Johánek V, Neitzel A, Mysliveček J, Fabris S, Matolín V, Neyman KM, Libuda J (2016) Nat Mater 15:284–288

    Article  CAS  Google Scholar 

  7. Pacchioni G (2013) Phys Chem Chem Phys 15:1737–1757

    Article  CAS  Google Scholar 

  8. Campbell CT (2012) Nat Chem 4:597–598

    Article  CAS  Google Scholar 

  9. Ševčíková K, Kolářová T, Skála T, Tsud N, Václavů M, Lykhach Y, Matolín V, Nehasil V (2015) Appl Surf Sci 332:747–755

    Article  Google Scholar 

  10. Vayssilov GN, Lykhach Y, Migani A, Staudt T, Petrova GP, Tsud N, Skála T, Bruix A, Illas F, Prince KC, Matolín V, Neyman KM, Libuda J (2011) Nat Mater 10:310–315

    Article  CAS  Google Scholar 

  11. Sattler JJHB, Gonzalez-Jimenez ID, Luo L, Stears BA, Malek A, Barton DG, Kilos BA, Kaminsky MP, Verhoeven TWGM, Koers EJ, Baldus M, Weckhuysen BM (2014) Angew Chem Int Ed 53:9251–9256

    Article  CAS  Google Scholar 

  12. Aranifard S, Ammal SC, Heyden A (2014) J Phys Chem C 118:6314–6323

    Article  CAS  Google Scholar 

  13. Trovarelli A (2002) Catalysis by ceria and related metals. Imperial College Press, London

    Book  Google Scholar 

  14. Gorte RJ (2010) AIChE J 56:1126–1135

    CAS  Google Scholar 

  15. Mullins DR (2015) Surf Sci Rep 70:42–85

    Article  CAS  Google Scholar 

  16. von Schenck H, Janin E, Tjernberg O, Svensson M, Göthelid M (2003) Surf Sci 526:184–192

    Article  Google Scholar 

  17. Paffett MT, Gebhard SC, Windham RG, Koel BE (1990) J Phys Chem 94:6831–6839

    Article  CAS  Google Scholar 

  18. Hightower A, Perez MD, Koel BE (2009) Surf Sci 603:455–461

    Article  CAS  Google Scholar 

  19. Dupont C, Loffreda D, Delbecq F, Santos Aires FJC, Ehret E, Jugnet Y (2008) J Phys Chem C 112:10862–10867

    Article  CAS  Google Scholar 

  20. Hsieh C-T, Chang Y-S, Yin K-M (2013) J Phys Chem C 117:15478–15486

    Article  CAS  Google Scholar 

  21. Pinto LMC, Juárez MF, Ângelo ACD, Schmickler W (2014) Electrochim Acta 116:39–43

    Article  CAS  Google Scholar 

  22. Stamenković V, Arenz M, Blizanac BB, Mayrhofer KJJ, Ross PN, Marković NM (2005) Surf Sci 576:145–157

    Article  Google Scholar 

  23. Dupont C, Loffreda D, Delbecq F, Jugnet Y (2007) J Phys Chem C 111:8524–8531

    Article  CAS  Google Scholar 

  24. Gülmen MA, Sümer A, Aksoylu AE (2006) Surf Sci 600:4909–4921

    Article  Google Scholar 

  25. Sümer A, Gülmen MA, Aksoylu AE (2006) Surf Sci 600:2026–2039

    Article  Google Scholar 

  26. Wang JG, Li WX, Borg M, Gustafson J, Mikkelsen A, Pedersen TM, Lundgren E, Weissenrieder J, Klikovits J, Schmid M, Hammer B, Andersen JN (2005) Phys Rev Lett 95:2561021–2561024

    Google Scholar 

  27. Tränkenschuh B, Fritsche N, Fuhrmann T, Papp C, Zhu JF, Denecke R, Steinrück H-P (2006) J Chem Phys 124:074712

    Article  Google Scholar 

  28. Kinne M, Fuhrmann T, Whelan CM, Zhu JF, Pantförder J, Probst M, Held G, Denecke R, Steinrück H-P (2002) J Chem Phys 117:10852–10859

    Article  CAS  Google Scholar 

  29. Moscu A, Schuurman Y, Veyre L, Thieuleux C, Meunier F (2014) Chem Commun 50:8590–8592

    Article  CAS  Google Scholar 

  30. Michalak WD, Krier JM, Alayoglu S, Shin J-Y, An K, Komvopoulos K, Liu Z, Somorjai GA (2014) J Catal 312:17–25

    Article  CAS  Google Scholar 

  31. Bochicchio D, Ferrando R (2013) Phys Rev B 87:165435

    Article  Google Scholar 

  32. Happel M, Mysliveček J, Johánek V, Dvořák F, Stetsovych O, Lykhach Y, Matolín V, Libuda J (2012) J Catal 289:118–126

    Article  CAS  Google Scholar 

  33. Šutara F, Cabala M, Sedláček L, Skála T, Škoda M, Matolín V, Prince KC, Cháb V (2008) Thin Solid Films 516:6120–6124

    Article  Google Scholar 

  34. Dvořák F, Stetsovych O, Steger M, Cherradi E, Matolínová I, Tsud N, Škoda M, Skála T, Mysliveček J, Matolín V (2011) J Phys Chem C 115:7496–7503

    Article  Google Scholar 

  35. Vari G, Ovari L, Kiss J, Konya Z (2015) Phys Chem Chem Phys 17:5124–5132

    Article  CAS  Google Scholar 

  36. Skála T, Šutara F, Prince KC, Matolín V (2009) J Electron Spectrosc Relat Phenom 169:20–25

    Article  Google Scholar 

  37. Neitzel A, Lykhach Y, Skala T, Tsud N, Johanek V, Vorokhta M, Prince KC, Matolin V, Libuda J (2014) Phys Chem Chem Phys 16:13209–13219

    Article  CAS  Google Scholar 

  38. Beran J, Matolín V, Mašek K (2015) Ceram Int 41:4946–4952

    Article  CAS  Google Scholar 

  39. Steininger H, Lehwald S, Ibach H (1982) Surf Sci 123:264–282

    Article  CAS  Google Scholar 

  40. Gawthrope DE, Wilson K, Lee AF (2003) Phys Chem Chem Phys 5:3299–3305

    Article  CAS  Google Scholar 

  41. Libra J (2011) KolXPD: spectroscopy data measurement and processing. http://www.kolibrik.net/science/kolxpd/. Accessed 15 Mar 2015

  42. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  44. Janthon P, Kozlov SM, Viñes F, Limtrakul J, Illas F (2013) J Chem Theory Comput 9:1631–1640

    Article  CAS  Google Scholar 

  45. Janthon P, Luo S, Kozlov SM, Viñes F, Limtrakul J, Truhlar DG, Illas F (2014) J Chem Theory Comput 10:3832–3839

    Article  CAS  Google Scholar 

  46. Kozlov SM, Kovács G, Ferrando R, Neyman KM (2015) Chem Sci 6:3868–3880

    Article  CAS  Google Scholar 

  47. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616–3621

    Article  CAS  Google Scholar 

  48. Viñes F, Illas F, Neyman KM (2007) Angew Chem Int Ed 46:7094–7097

    Article  Google Scholar 

  49. Zhou W, Liu L, Li B, Wu P, Song Q (2009) Comput Mater Sci 46:921–931

    Article  CAS  Google Scholar 

  50. Skála T, Šutara F, Škoda M, Prince KC, Matolín V (2009) J Phys Condens Matter 21:0550051–0550059

    Article  Google Scholar 

  51. Tougaard S (2010) QUASES-IMPF-TPP2M, http://www.quases.com. Accessed 15 Feb 2016

  52. DeSario DY, DiSalvo FJ (2014) Chem Mater 26:2750–2757

    Article  CAS  Google Scholar 

  53. Shimizu S, Noritake H, Koitaya T, Mukai K, Yoshimoto S, Yoshinobu J (2013) Surf Sci 608:220–225

    Article  CAS  Google Scholar 

  54. Tränkenschuh B, Papp C, Fuhrmann T, Denecke R, Steinrück HP (2007) Surf Sci 601:1108–1117

    Article  Google Scholar 

  55. Zhu JF, Kinne M, Fuhrmann T, Tränkenschuh B, Denecke R, Steinrück HP (2005) Coadsorption of NO and CO on a Pt(111) surface studied by high-resolution synchrotron radiation photoemission. In: Norris CP (ed) Focus on surface science research. Nova Science, Hauppauge, NY, p 217

    Google Scholar 

  56. Neitzel A, Lykhach Y, Skála T, Tsud N, Vorokhta M, Mazur D, Prince KC, Matolín V, Libuda J (2014) Phys Chem Chem Phys 16:24747–24754

    Article  CAS  Google Scholar 

  57. Lykhach Y, Staudt T, Lorenz MPA, Streber R, Bayer A, Steinrück HP, Libuda J (2010) Chem Phys Chem 11:1496–1504

    Article  CAS  Google Scholar 

  58. Sandell A, Libuda J, Brühwiler PA, Andersson S, Maxwell AJ, Bäumer M, Mårtensson N, Freund HJ (1996) J Vac Sci Technol. A 14:1546–1551

    CAS  Google Scholar 

  59. Pick Š (1999) Surf Sci 436:220–226

    Article  CAS  Google Scholar 

  60. Rodriguez JA, Chaturvedi S, Jirsak T, Hrbek J (1998) J Chem Phys 109:4052–4062

    Article  CAS  Google Scholar 

  61. Tsud N, Skála T, Veltruská K, Škoda M, Prince KC, Matolín V (2011) J Phys Condens Matter 23:215002

    Article  CAS  Google Scholar 

  62. Sun HP, Pan XP, Graham GW, Jen H-W, McCabe RW, Thevuthasan S, Peden CHF (2005) Appl Phys Lett 87:201915

    Article  Google Scholar 

  63. Mullins DR, Zhang KZ (2002) Surf Sci 513:163–173

    Article  CAS  Google Scholar 

  64. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge

    Book  Google Scholar 

  65. Kovács G, Kozlov SM, Matolínová I, Vorokhta M, Matolín V, Neyman KM (2015) Phys Chem Chem Phys 17:28298–28310

    Article  Google Scholar 

  66. Huang X, Su Y, Sai L, Zhao J, Kumar V (2015) J Cluster Sci 26:389–409

    Article  CAS  Google Scholar 

  67. Vorokhta M, Khalakhan I, Václavů M, Kovács G, Kozlov SM, Kúš P, Skála T, Tsud N, Lavková J, Potin V, Matolínová I, Neyman KM, Matolín V (2016) Appl Surf Sci 365:245–251

    Article  CAS  Google Scholar 

  68. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  69. Neyman KM, Sahnoun R, Inntam C, Hengrasmee S, Rösch N (2004) J Phys Chem B 108:5424–5430

    Article  CAS  Google Scholar 

  70. Weilach C, Kozlov SM, Holzapfel HH, Föttinger K, Neyman KM, Rupprechter G (2012) J Phys Chem C 116:18768–18778

    Article  CAS  Google Scholar 

  71. Jennings PC, Aleksandrov HA, Neyman KM, Johnston RL (2014) Nanoscale 6:1153–1165

    Article  CAS  Google Scholar 

  72. Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141–2144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Community (FP7-NMP.2012.1.1-1 project chipCAT, Reference No. 310191), by the Deutsche Forschungsgemeinschaft (DFG) within the Excellence Cluster “Engineering of Advanced Materials” in the framework of the excellence initiative, by the Spanish MINECO (Grants CTQ2012-34969 and CTQ2015-64618-R co-funded by FEDER), by the Generalitat de Catalunya (Grants 2014SGR97 and XRQTC), and by the Czech Science Foundation (Grant 13-10396S). The authors acknowledge a support by the COST Action CM1104 “Reducible oxide chemistry, structure and functions”. Computer resources, technical expertise and assistance were provided by the Red Española de Supercomputación. Y.L., A.N., M.V., and N.T. thank Elettra and Dr. Kevin C. Prince for excellent working conditions and support. The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No 312284.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaroslava Lykhach or Jörg Libuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neitzel, A., Kovács, G., Lykhach, Y. et al. Atomic Ordering and Sn Segregation in Pt–Sn Nanoalloys Supported on CeO2 Thin Films. Top Catal 60, 522–532 (2017). https://doi.org/10.1007/s11244-016-0709-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0709-5

Keywords

Navigation