Skip to main content
Log in

Metal-Catecholate Frameworks as Solid Basic Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Metal catecholate frameworks, based on 2,3,6,7,10,11-hexahydroxytriphenylene and bivalent metal ions (Ni2+, Cu2+, Zn2+, Mg2+, Ca2+, Sr2+ and Ba2+) were synthesized, characterized with powder X-ray diffraction and N2 physisorption, and evaluated as catalysts in Knoevenagel condensation and Michael addition reactions. The large number of catecholate oxygen atoms in these materials resulted in a high catalytic activity which was shown to be a function of both the porosity of the material and the electronegativity of the metal ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gascon J, Aktay U, Hernandez-Alonso MD, van Klink GPM, Kapteijn F (2009) Amino-based metal-organic frameworks as stable, highly active basic catalysts. J Catal 261(1):75–87. doi:10.1016/j.jcat.2008.11.010

    Article  CAS  Google Scholar 

  2. Kasinathan P, Seo YK, Shim KE, Hwang YK, Lee UH, Hwang DW, Hong DY, Halligudi SB, Chang JS (2011) Effect of diamine in amine-functionalized MIL-101 for knoevenagel condensation. Bull Korean Chem Soc 32(6):2073–2075. doi:10.5012/bkcs.2011.32.6.2073

    Article  CAS  Google Scholar 

  3. Savonnet M, Aguado S, Ravon U, Bazer-Bachi D, Lecocq V, Bats N, Pinel C, Farrusseng D (2009) Solvent free base catalysis and transesterification over basic functionalised metal-organic frameworks. Green Chem 11(11):1729–1732

    Article  CAS  Google Scholar 

  4. Tan Y, Fu Z, Zhang J (2011) A layered amino-functionalized zinc-terephthalate metal organic framework: structure, characterization and catalytic performance for Knoevenagel condensation. Inorg Chem Commun 14(12):1966–1970. doi:10.1016/j.inoche.2011.09.022

    Article  CAS  Google Scholar 

  5. Valvekens P, Jonckheere D, De Baerdemaeker T, Kubarev AV, Vandichel M, Hemelsoet K, Waroquier M, Van Speybroeck V, Smolders E, Depla D, Roeffaers MBJ, De Vos D (2014) Base catalytic activity of alkaline earth MOFs: a (micro)spectroscopic study of active site formation by the controlled transformation of structural anions. Chem Sci 5(11):4517–4524. doi:10.1039/c4sc01731e

    Article  CAS  Google Scholar 

  6. Valvekens P, Vandichel M, Waroquier M, Van Speybroeck V, De Vos D (2014) Metal-dioxidoterephthalate MOFs of the MOF-74 type: microporous basic catalysts with well-defined active sites. J Catal 317:1–10. doi:10.1016/j.jcat.2014.06.006

    Article  CAS  Google Scholar 

  7. Song J, Wu L, Zhou B, Zhou H, Fan H, Yang Y, Meng Q, Han B (2015) A new porous Zr-containing catalyst with a phenate group: an efficient catalyst for the catalytic transfer hydrogenation of ethyl levulinate to [gamma]-valerolactone. Green Chem. doi:10.1039/c4gc02104e

    Google Scholar 

  8. Hmadeh M, Lu Z, Liu Z, Gándara F, Furukawa H, Wan S, Augustyn V, Chang R, Liao L, Zhou F, Perre E, Ozolins V, Suenaga K, Duan X, Dunn B, Yamamto Y, Terasaki O, Yaghi OM (2012) New porous crystals of extended metal-catecholates. Chem Mater 24(18):3511–3513. doi:10.1021/cm301194a

    Article  CAS  Google Scholar 

  9. Yaghi OM, Gandara-Barragan F, Wan S, Lu Z (2012) Preparation of metal-catecholate frameworks. 09.08.2012

  10. Lebedev AV, Ivanova MV, Timoshin AA, Ruuge EK (2007) Effect of group II metal cations on catecholate oxidation. Chem Phys Chem 8(12):1863–1869. doi:10.1002/cphc.200700296

    CAS  Google Scholar 

  11. Tanabe K, Saito K (1974) The conversion of benzaldehyde into benzyl benzoate with alkaline earth metal oxide catalysts. J Catal 35(2):247–255. doi:10.1016/0021-9517(74)90203-6

    Article  CAS  Google Scholar 

  12. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27(4):734–740. doi:10.1021/ic00277a030

    Article  CAS  Google Scholar 

  13. Atkins P, Overton T, Rourke J, Weller M, Armstrong F, Hagerman M (2010) Shriver and Atkins’ Inorganic Chemistry, 5th edn. Oxford University Press, Great Britain

    Google Scholar 

  14. Sanderson RT (1988) Principles of electronegativity Part I. Gen nat J Chem Educ 65(2):112. doi:10.1021/ed065p112

    Article  CAS  Google Scholar 

  15. Sanderson RT (1976) Chemical bonds and bond energy. Academic Press, New York

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Belgian Federal Government for support in the IAP project 07/05 Functional Supramolecular Systems, to K. U. Leuven for the Methusalem CASAS grant, and to FWO Vlaanderen for research project funding G.0453.09 and G.0486.12. P.V. is grateful for a fellowship from FWO Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk De Vos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valvekens, P., Stalpaert, M., De Winter, G. et al. Metal-Catecholate Frameworks as Solid Basic Catalysts. Top Catal 59, 1757–1764 (2016). https://doi.org/10.1007/s11244-016-0697-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0697-5

Keywords

Navigation