Skip to main content
Log in

Mixed-Metal Metal–Organic Frameworks as Catalysts for Liquid-Phase Oxidation of Toluene and Cycloalkanes

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A series of isostructural mixed-metal metal–organic frameworks (MM-MOFs) of 1,3,5-benzenetricarboxylate (BTC), M–Zn–BTC, where M = Cu(II), Co(II) and Fe(II) have been synthesized using the post-synthetic exchange method. The catalytic activities of the M–Zn–BTC have been investigated for the oxidation of toluene and cycloalkanes in the presence of hydrogen peroxide as oxidant. The M–Zn–BTC catalysts show improved activity and selectivity for toluene oxidation. The introduction of the second metal to the node of the MOFs improved the toluene conversion from 22 to 70% and the selectivity of benzaldehyde improved from 22 to 57%. The Fe–Zn–BTC showed the best activity in terms of benzaldehyde selectivity for the oxidation of toluene. However, Cu–BTC gave the highest conversion for cyclohexane and methylcyclohexane oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grasselli, R.K.: Fundamental principles of selective heterogeneous oxidation catalysis. Top. Catal. 21, 79–88 (2002)

    Article  Google Scholar 

  2. Nag, N.K.; Fransen, T.; Marst, P.: The oxidation of toluene on various molybdenum-containing catalysts. J. Catal. 68, 77–85 (1981)

    Article  Google Scholar 

  3. Wu, H.-Y.; Zhang, X.-L.; Chen, X.; et al.: Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid. J. Solid State Chem. 211, 51 (2014)

    Article  Google Scholar 

  4. Lv, J.-G.; Shen, Y.; Peng, L.-M.; et al.: Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chem. Commun. 46, 5909–5911 (2010)

    Article  Google Scholar 

  5. Kesavan, L.; Tiruvalam, R.; AbRahim, M.H.; et al.: Solvent-free oxidation of primary carbon–hydrogen bonds in toluene using Au–Pd alloy nanoparticles. Science 331, 195–199 (2011)

    Article  Google Scholar 

  6. Partenheimer, W.: Methodology and scope of metal/bromide autooxidation of hydrocarbons. Catal. Today 23, 69–158 (1995)

    Article  Google Scholar 

  7. Jia, L.; Zhang, S.; Gu, F.-N.; et al.: Highly selective gas phase oxidation of benzyl alcohol to benzaldehyde over silver-containing hexagonal mesoporous silica. Microporous Mesoporous Mater. 149, 158–165 (2012)

    Article  Google Scholar 

  8. Guo, C.; Liu, Q.; Wang, X.; et al.: Selective liquid phase oxidation of toluene with air. Appl. Catal. A Gen. 282, 55–59 (2005)

    Article  Google Scholar 

  9. Sheldon, R.A.; Kochi, J.K.: Metal-Catalyzed Oxidations of Organic Compounds. Academic Press, New York (1981)

    Google Scholar 

  10. Strukul, G.: Catalytic Oxidations with Hydrogen Peroxide as Oxidant. Springer, Berlin (1992)

    Book  Google Scholar 

  11. Haggin, J.: Chemists seek greater recognition for catalysis. Chem. Eng. News 71, 23–27 (1993)

    Article  Google Scholar 

  12. Martin, A.; Lücke, B.: Ammoxidation and oxidation of substituted methyl aromatics on vanadium-containing catalysts. Catal. Today 57, 61–70 (2000)

    Article  Google Scholar 

  13. Huang, G.; Luo, J.; Deng, C.C.; et al.: Catalytic oxidation of toluene with molecular oxygen over manganese tetraphenylporphyrin supported on chitosan. Appl. Catal. A 338, 83–86 (2008)

    Article  Google Scholar 

  14. Marimoto, Y.; Bunno, S.; Fujieda, N.; et al.: Direct hydroxylation of benzene to phenol using hydrogen peroxide catalyzed by nickel complexes supported by pyridylalkylamine ligands. J. Am. Chem. Soc. 137, 5867–5870 (2015)

    Article  Google Scholar 

  15. Labinger, J.A.: Selective alkane oxidation: hot and cold approaches to a hot problem. J. Mol. Catal. A Chem. 220, 27–35 (2004)

    Article  Google Scholar 

  16. Tong, J.; Bo, L.; Cai, X.; et al.: Aerobic oxidation of cyclohexane effectively catalyzed by simply synthesized silica-supported cobalt ferrite magnetic nanocrystal. Ind. Eng. chem. Res. 53, 10294–10300 (2014)

    Article  Google Scholar 

  17. Schuchardt, U.; Cardoso, D.; Sercheli, R.; et al.: Cyclohexane oxidation continues to be a challenge. Appl. Catal. A 211, 1–17 (2001)

    Article  Google Scholar 

  18. Li, J.-R.; Kuppler, R.J.; Zhou, H.-C.: Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  Google Scholar 

  19. Roswell, J.C.; Yaghi, O.M.: Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004)

    Article  Google Scholar 

  20. Lee, J.; Farha, O.K.; Roberts, J.; et al.: Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)

    Article  Google Scholar 

  21. Horcajada, P.; Gref, R.; Baati, T.; et al.: Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2011)

    Article  Google Scholar 

  22. Gascon, J.; Kapteijn, F.: Metal-organic framework membranes-high potential, bright future? Angew. Chem. Int. Ed. 49, 1530–1532 (2010)

    Article  Google Scholar 

  23. Ranocchiari, M.; Bokhoven, J.A.: Catalysis by metal-organic frameworks: fundamentals and opportunities. Phys. Chem. Chem. Phys. 13, 6388–6396 (2011)

    Article  Google Scholar 

  24. Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H.: Metal-organic frameworks as heterogeneous catalysts for oxidation reactions. Catal. Sci. Technol. 1, 856–867 (2011)

    Article  Google Scholar 

  25. Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H.: Metal-organic frameworks as catalysts for oxidation reactions. Chem. Eur. J. 22, 8012–8024 (2016)

    Article  Google Scholar 

  26. Schuster, S.; Klemm, E.; Bauer, M.: The role of \(\text{Pd}^{2+}/\text{Pd}^{0}\) in hydrogenation by [Pd(2-pymo)\(_{2}\)]\(n\): an X-ray absorption and ir spectroscopic study. Chem. Eur. J. 19, 15831–15837 (2012)

    Article  Google Scholar 

  27. Long, J.L.; Wang, L.M.; Gao, X.F.; et al.: Activation of molecular oxygen by a metal-organic framework with open 2,2’-bipyridine for selective oxidation of saturated hydrocarbons. Chem. Commun. 48, 12109–12111 (2012)

    Article  Google Scholar 

  28. Horike, S.; Dincǎ, M.; Tamaki, K.; Long, J.R.: Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed \(\text{Mn}^{2+}\) coordination sites. J. Am. Chem. Soc. 130, 5854–5855 (2008)

    Article  Google Scholar 

  29. Chizallet, C.; Lazare, S.; Bazer-Bachi, D.; et al.: Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. J. Am. Chem. Soc. 132, 12365–12377 (2010)

    Article  Google Scholar 

  30. Liu, Y.; Zhang, T.; Wu, W.; et al.: Water-mediated promotion of direct oxidation of benzene over the metal-organic framework HKUST-1. RSC Adv. 5, 56020–56027 (2015)

    Article  Google Scholar 

  31. Deng, H.; Doonan, C.J.; Furukawa, H.; et al.: Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010)

    Article  Google Scholar 

  32. Kong, X.; Deng, H.; Yan, F.; et al.: Mapping of functional groups in metal-organic frameworks. Science 341, 882–885 (2013)

    Article  Google Scholar 

  33. Wang, L.J.; Deng, H.; Furukawa, H.; et al.: Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881–5883 (2014)

    Article  Google Scholar 

  34. Brozek, C.K.; Dincă, M.: \(\text{Ti}^{3+}-\), \(\text{V}^{2+/3+}-\), \(\text{Cr}^{2+/3+}-\), \(\text{Mn}^{2+}-\), and \(\text{Fe}^{2+}-\)substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J. Am. Chem. Soc. 135, 12886–12891 (2013)

    Article  Google Scholar 

  35. Kim, M.; Cahill, J.F.; Fei, H.; et al.: Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J. Am.Chem. Soc. 134, 18082–18088 (2012)

    Article  Google Scholar 

  36. Zhang, W.; et al.: A robust metal-metalloporphyrin framework based upon a secondary building unit of infinite nickel oxide chain. Cryst. Growth Des. 16, 1005–1009 (2016)

    Article  Google Scholar 

  37. Zhang, W.; et al.: Metal-metalloporphyrin framework modified with flexible tert-butyl groups for selective gas adsorption. Chem. Plus Chem. 81, 714–717 (2016)

    Google Scholar 

  38. Sun, G.; Li, G.; Zhang, Y.; et al.: Ag–Cu–BTC prepared by postsynthetic exchange as effective catalyst for selective oxidation of toluene to benzaldehyde. Catal. Commun. 59, 92–96 (2015)

    Article  Google Scholar 

  39. Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H.: Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catal. Sci. Technol. 6, 5238–5261 (2016)

    Article  Google Scholar 

  40. Burrows, A.D.: Mixed-component metal-organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. Cryst. Eng. Commun. 13, 3623–3642 (2011)

    Article  Google Scholar 

  41. Wang, Z.-Q.; Cohen, S.M.: Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev. 38, 1315–1329 (2009)

    Article  Google Scholar 

  42. Chui, S.S.Y.; Lo, S.M.F.; Charmant, J.P.H.; et al.: A chemically functionalizable nanoporous material. Science 283, 1148–1150 (1999)

    Article  Google Scholar 

  43. Opanasenko, M.; Dhakshinamoorthy, A.; Shamzhy, M.; et al.: Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol. 3, 500–507 (2013)

    Article  Google Scholar 

  44. Perez-Mayoral, E.; Musilova, Z.; Gil, B.; et al.: Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal-organic-framework. Dalton Trans. 41, 4036–4044 (2012)

    Article  Google Scholar 

  45. Mitchell, L.; Gonzalez-Santiago, B.; Mowat, J.P.S.; et al.: Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C-C and C: N bond-forming reactions. Catal. Sci. Technol. 3, 606–617 (2013)

    Article  Google Scholar 

  46. Gul-E-Noor, F.; Jee, B.; Mendt, M.; et al.: Formation of mixed metal \(\text{Cu}_{3-x}\text{Zn}_{x}(\text{btc})_{2}\) frameworks with different zinc contents: incorporation of \(\text{Zn}^{2+}\) into the metal-organic framework structure as studied by solid-state NMR. J. Phys. Chem. C 116, 20866–20873 (2012)

    Article  Google Scholar 

  47. Gotthardt, M.A.; Schoch, R.; Wolf, S.; et al.: Synthesis and characterization of bimetallic metal-organic framework Cu-Ru-BTC with HKUST-1 structure. Dalton Trans. 44, 2052–2056 (2015)

    Article  Google Scholar 

  48. Wang, X.; Cao, X.; Hu, X.; et al.: Effect of zirconium addition on vanadium-catalyzed toluene oxidation by \(\text{H}_{2}\text{O}_{2}\) in \(\text{CH}_{3}\text{COOH}\). J. Mol. Catal. A Chem. 357, 1–10 (2012)

    Article  Google Scholar 

  49. Du, B.; Kim, S.; Lou, L.-L.; et al.: A simple and efficient zeolite catalyst for toluene oxidation in aqueous media. Appl. Catal. A 425–426, 191–198 (2013)

    Google Scholar 

  50. Meng, Y.; Liang, B.; Tang, S.W.: A study on the liquid-phase oxidation of toluene in ionic liquids. Gen. Appl. Catal. A 439–440, 1–7 (2012)

    Article  Google Scholar 

  51. Islam, S.K.M.; Paul, S.; Roy, A.S.; et al.: Selective oxidation of organic substrates in presence of \(\text{H}_{2}\text{O}_{2}\) using a polymer-anchored iron(III)-ferrocene complex. J. Inorg. Organomet. Polym. 23, 560–570 (2012)

    Article  Google Scholar 

  52. Alavi, S.; Hosseini-Monfared, H.; Siczek, M.: A new manganese(III) complex anchored onto SBA-15 as efficient catalyst for selective oxidation of cycloalkanes and cyclohexene with hydrogen peroxide. J. Mol. Catal. A Chem. 377, 16–28 (2012)

    Article  Google Scholar 

  53. Goberna-Ferrón, S.; Lillo, V.; Galán-Mascarós, J.R.: [Cu(L-prolinate)2]: a catalyst for environmentally friendly oxidation of alkanes and alkenes with \(\text{H}_{2}\text{O}_{2}\) and \(\text{O}_{2}\). Catal. Commun. 23, 30–33 (2012)

    Article  Google Scholar 

  54. Bagherzadeh, M.; Amini, M.; Ellern, A.; et al.: Catalytic efficiency of a novel complex of oxoperoxo molybdenum(VI): synthesis, X-ray structure and alkane oxidation. Inorg. Chem. Commun. 15, 52–55 (2012)

    Article  Google Scholar 

  55. Dong, J.J.; Unjaroen, D.; Mecozzi, F.; Harvey, E.C.; et al.: Manganese-catalyzed selective oxidation of aliphatic C–H groups and secondary alcohols to ketones with hydrogen peroxide. Chem. SusChem. 6, 1774–1778 (2013)

  56. Xie, Y.; et al.: Zinc oxide supported trans-CoD(p-Cl)PPCl-type metalloporphyrins catalyst for cyclohexane oxidation to cyclohexanol and cyclohexanone with high yield. Ind. Eng. Chem. Res. 54, 2425–2430 (2015)

    Article  Google Scholar 

  57. Farzaneh, F.; Sohrabi, S.; Ghiasi, M.; et al.: Immobilized iron Schiff base histidine complexes on Al-MCM-41 and zeolite Y as catalyst for oxidation of cycloalkanes. J. Porous Mater. 20, 267–275 (2013)

    Article  Google Scholar 

  58. Liu, R.H.; Huang, H.; Li, H.T.; et al.: Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal. 4, 328–336 (2014)

    Article  Google Scholar 

  59. Zhao, M.-X.; et al.: A highly active solid acid for specifically catalyzing di(1-naphthyl)methane hydrocracking in cyclohexane. Fuel Process Technol. 142, 258–263 (2016)

    Article  Google Scholar 

  60. Phan, N.T.S.; Nguyen, T.T.; Ho, P.; et al.: Copper-catalyzed synthesis of \(\alpha \)-aryl ketones by metal-organic framework MOF-199 as an efficient heterogeneous catalyst. Chem. CatChem. 5, 1822–1831 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Malik P. Peedikakkal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 383 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peedikakkal, A.M.P., Jimoh, A.A., Shaikh, M.N. et al. Mixed-Metal Metal–Organic Frameworks as Catalysts for Liquid-Phase Oxidation of Toluene and Cycloalkanes. Arab J Sci Eng 42, 4383–4390 (2017). https://doi.org/10.1007/s13369-017-2452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2452-z

Keywords

Navigation