Skip to main content

Introduction to Metal-Organic Frameworks (MOFs)

  • Chapter
  • First Online:
Metal-Organic Frameworks (MOFs) as Catalysts

Abstract

In this era of incessant development and progress in the production of diverse class of chemical compounds, heterogeneous catalysis has become an integral part of the expeditious and efficient synthesis in view of the non-reusability of the homogenous catalysts. The quality and efficiency of the heterogeneous catalysts is essentially determined by their stability and availability of their well-defined active sites. In this regard, synthetically created metal–organic frameworks (MOFs) have garnered immense interest in the past decade, bringing favorable characteristics for their application as heterogeneous catalysts over other materials, such as zeolites. They comprise special organometallic coordination polymers having a cationic center and linkage with organic ligands giving rise to a stable crystalline porous cage-like structure. Because of their flexibility in redefining surface area, crystallinity, tunability, rich topology, porosity, and dispersity of active sites, they find numerous applications, catalysis being the more promising one. In this chapter, the basics of MOFs are introduced, their synthesis methods, typical characteristics along with limelight of their promising appliances as catalysts. Further, the salient advantages of MOFs over homogenous counterparts and conventional heterogeneous catalysts has been deliberated with limitations, and their future prospects in the field of catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MOF:

Metal-Organic Frameworks

BASF:

Baden Aniline and Soda Factory

NPs:

Nanoparticles

SBU:

Secondary Building Unit

HKUST:

Hong Kong University of Science and Technology-series MOFs

BTC:

1,3,5-Benzenetricarboxylate

MIL-series:

Matériaux de l′Institut Lavoisier-series

NG:

Neat Grinding

LAG:

Liquid-assisted grinding

ILAG:

Ion-and-liquid assisted grinding

INA:

1,5-Bis(n-benzyloxycarbonyl-l-leucinyl)carbohydrazide

PSM:

Post-synthetic modifications

PSE:

Post-synthetic exchange

PSD:

Post-synthetic deprotection

UiO:

Universitetet i Oslo-series MOFs

CAU-1:

[Al4(OH)2(OCH3)4(H2N-BDC)3xH2O MOF

SALI:

Solvent-Assisted Ligand Incorporation

ZIFs:

Zeolitic imidazolate frameworks

MCM:

Mobil Composition of Matter

COC:

Cyclic organic carbonates

POMs:

Polyoxometalates

HER:

Hydrogen evolution reactions

ORR:

Oxygen reduction reactions

OER:

Oxygen evolution reactions

CO2RR:

Carbon dioxide reduction reactions

NU-1000:

Zirconium-based MOF

HMF:

Hydroxymethylfurfural

LMOF:

Luminescent Metal–Organic Frameworks

References

  1. A. Dhakshinamoorthy, HG (2014) Metal organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles Table of Content Ph Ph O This Critical Review summarizes the recent developments in the use of metal-organic frameworks as catalysts for the synthesis of nit

    Google Scholar 

  2. Ahn S, Nauert SL, Buru CT, Rimoldi M, Choi H, Schweitzer NM, Hupp JT, Farha OK, Notestein JM (2018) Pushing the limits on metal-organic frameworks as a catalyst support: NU-1000 supported tungsten catalysts for o-xylene isomerization and disproportionation. J Am Chem Soc 140:8535–8543. https://doi.org/10.1021/jacs.8b04059

    Article  CAS  PubMed  Google Scholar 

  3. Ahnfeldt T, Guillou N, Gunzelmann D, Margiolaki I, Loiseau T, Férey G, Senker J, Stock N (2009) [Al4(OH)2(OCH3)4(H 2N- Bdc)3]·xH2O: A 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. Angew Chemie—Int Ed 48:5163–5166. https://doi.org/10.1002/anie.200901409

    Article  CAS  Google Scholar 

  4. Alonso G, Bahamon D, Keshavarz F, Giménez X, Gamallo P, Sayós R (2018) Density functional theory-based adsorption isotherms for pure and flue gas mixtures on Mg-MOF-74. Application in CO2 capture swing adsorption processes. J Phys Chem C 122:3945–3957. https://doi.org/10.1021/acs.jpcc.8b00938

    Article  CAS  Google Scholar 

  5. An B, Zhang J, Cheng K, Ji P, Wang C, Lin W (2017) Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139:3834–3840. https://doi.org/10.1021/jacs.7b00058

    Article  CAS  PubMed  Google Scholar 

  6. Arbor A (2003) (12) United States Patent 1

    Google Scholar 

  7. Ayoub G, Karadeniz B, Howarth AJ, Farha OK, Lilović I, Germann LS, Dinnebier RE, Užarević K, Friščić T (2019) Rational synthesis of mixed-metal microporous metal-organic frameworks with controlled composition using mechanochemistry. Chem Mater 31:5494–5501. https://doi.org/10.1021/acs.chemmater.9b01068

    Article  CAS  Google Scholar 

  8. Bauer S, Serre C, Devic T, Horcajada P, Férey G, Stock N (2008) High-Throughput assisted rationalization of the formation iron (III) aminoterephthalate solvothermal system. Inorg Chem 9:7568–7576

    Article  Google Scholar 

  9. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  10. Beitollahi H, Van Le Q, Farha OK, Shokouhimehr M, Tajik S, Nejad FG, Kirlikovali KO, Jang HW, Varma RS (2020) Recent electrochemical applications of metal-organic framework- based materials. Cryst Growth Des 20:7034–7064. https://doi.org/10.1021/acs.cgd.0c00601

    Article  CAS  Google Scholar 

  11. Bernales V, Yang D, Yu J, Gümüşlu G, Cramer CJ, Gates BC, Gagliardi L (2017) Molecular rhodium complexes supported on the metal-oxide-like nodes of metal organic frameworks and on zeolite HY: Catalysts for ethylene hydrogenation and dimerization. ACS Appl Mater Interfaces 9:33511–33520. https://doi.org/10.1021/acsami.7b03858

    Article  CAS  PubMed  Google Scholar 

  12. Cai G, Jiang HL (2017) A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew. Chemie - Int. Ed. 56:563–567. https://doi.org/10.1002/anie.201610914

    Article  CAS  Google Scholar 

  13. Cai J, Chen Y, Song H, Hou L, Li Z (2020) MOF derived C/Co@C with a “one-way-valve”-like graphitic carbon layer for selective semi-hydrogenation of aromatic alkynes. Carbon N. Y. 160:64–70. https://doi.org/10.1016/j.carbon.2020.01.006

    Article  CAS  Google Scholar 

  14. Canivet J, Aguado S, Schuurman Y, Farrusseng D (2013) MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. J Am Chem Soc 135:4195–4198. https://doi.org/10.1021/ja312120x

    Article  CAS  PubMed  Google Scholar 

  15. Caratelli C, Hajek J, Cirujano FG, Waroquier M, Llabrés i Xamena FX, Van Speybroeck V (2017) Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. J Catal 352:401–414. https://doi.org/10.1016/j.jcat.2017.06.014

  16. Cliffe MJ, Wan W, Zou X, Chater PA, Kleppe AK, Tucker MG, Wilhelm H, Funnell NP, Coudert FX, Goodwin AL (2014) Correlated defect nanoregions in a metal-organic framework. Nat Commun 5:1–8. https://doi.org/10.1038/ncomms5176

    Article  CAS  Google Scholar 

  17. Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC (2015) Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc 137:118–121. https://doi.org/10.1021/ja5116937

    Article  CAS  PubMed  Google Scholar 

  18. Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112:970–1000. https://doi.org/10.1021/cr200179u

    Article  CAS  PubMed  Google Scholar 

  19. Comyns AE (2001) Chemical process technology. JA Moulijn, M Makkee, A van Diepen, John Wiley and Sons Ltd, Chichester, 2001. xii?+?453 pages. 27.50 ISBN 0–471–63062–4 (paperback). Appl Organomet Chem 15:956–956. https://doi.org/10.1002/aoc.202

  20. Couck S, Denayer JFM, Baron GV, Rémy T, Gascon J, Kapteijn F (2009) An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131:6326–6327. https://doi.org/10.1021/ja900555r

    Article  CAS  PubMed  Google Scholar 

  21. Crake A, Christoforidis KC, Kafizas A, Zafeiratos S, Petit C (2017) CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation. Appl Catal B Environ 210:131–140. https://doi.org/10.1016/j.apcatb.2017.03.039

    Article  CAS  Google Scholar 

  22. Cui W, Zhang G, Hu T, Bu X (2019) Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO 2 and CH 4 q. Coord Chem Rev 387:79–120. https://doi.org/10.1016/j.ccr.2019.02.001

    Article  CAS  Google Scholar 

  23. Cui Y, Yue Y, Qian G, Chen B (2012) Luminescent functional metal à organic frameworks 1126–1162

    Google Scholar 

  24. Dekrafft KE, Wang C, Lin W (2012) Metal-organic framework templated synthesis of Fe 2O 3/TiO 2 nanocomposite for hydrogen production. Adv Mater 24:2014–2018. https://doi.org/10.1002/adma.201200330

    Article  CAS  PubMed  Google Scholar 

  25. Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science (80-. ). 336:1018–1023. https://doi.org/10.1126/science.1220131

  26. Deria P, Mondloch JE, Tylianakis E, Ghosh P, Bury W, Snurr RQ, Hupp JT, Farha OK (2013) Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. J Am Chem Soc 135:16801–16804. https://doi.org/10.1021/ja408959g

    Article  CAS  PubMed  Google Scholar 

  27. Desai SP, Ye J, Zheng J, Ferrandon MS, Webber TE, Platero-Prats AE, Duan J, Garcia-Holley P, Camaioni DM, Chapman KW, Delferro M, Farha OK, Fulton JL, Gagliardi L, Lercher JA, Penn RL, Stein A, Lu CC (2018) Well-defined rhodium-gallium catalytic sites in a metal-organic framework: promoter-controlled selectivity in alkyne semihydrogenation to e-alkenes. J Am Chem Soc 140:15309–15318. https://doi.org/10.1021/jacs.8b08550

    Article  CAS  PubMed  Google Scholar 

  28. Deutschmann O, Knözinger H, Kochloefl K, Turek T (2011) Heterogeneous catalysis and solid catalysts, 1. Fundamentals. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007.a05_313.pub3

  29. Dhakshinamoorthy A, Asiri AM, García H (2016) Metal-organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew. Chemie - Int. Ed. 55:5414–5445. https://doi.org/10.1002/anie.201505581

    Article  CAS  Google Scholar 

  30. Dhakshinamoorthy A, Li Z, Garcia H (2018) Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 47:8134–8172. https://doi.org/10.1039/c8cs00256h

    Article  CAS  PubMed  Google Scholar 

  31. Dhakshinamoorthy A, Opanasenko M, Čejka J, Garcia H (2013) Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catal Sci Technol 3:2509–2540. https://doi.org/10.1039/c3cy00350g

    Article  CAS  Google Scholar 

  32. Dissegna S, Epp K, Heinz WR, Kieslich G, Fischer RA (2018) Defective metal-organic frameworks. Adv Mater 30:1–23. https://doi.org/10.1002/adma.201704501

    Article  CAS  Google Scholar 

  33. Do JL, Friščić T (2017) Mechanochemistry: a force of synthesis. ACS Cent Sci 3:13–19. https://doi.org/10.1021/acscentsci.6b00277

    Article  CAS  PubMed  Google Scholar 

  34. Evans JD, Sumby CJ, Doonan CJ (2014) Post-synthetic metalation of metal-organic frameworks. Chem Soc Rev 43:5933–5951. https://doi.org/10.1039/c4cs00076e

    Article  CAS  PubMed  Google Scholar 

  35. Fan C, Wang R, Kong P, Wang X, Wang J, Zhang X, Zheng Z (2020) Modification of Au nanoparticles electronic state by MOFs defect engineering to realize highly active photocatalytic oxidative esterification of benzyl alcohol with methanol. Catal Commun 140:106002. https://doi.org/10.1016/j.catcom.2020.106002

    Article  CAS  Google Scholar 

  36. Fang Y, Ma Y, Zheng M, Yang P, Asiri AM, Wang X (2018) Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coord Chem Rev 373:83–115. https://doi.org/10.1016/j.ccr.2017.09.013

    Article  CAS  Google Scholar 

  37. Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew. Chemie - Int. Ed. 48:7502–7513. https://doi.org/10.1002/anie.200806063

    Article  CAS  Google Scholar 

  38. Fei H, Shin J, Meng YS, Adelhardt M, Sutter J, Meyer K, Cohen SM (2014) Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework. J Am Chem Soc 136:4965–4973. https://doi.org/10.1021/ja411627z

    Article  CAS  PubMed  Google Scholar 

  39. Férey C, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) Chemistry: a chromium terephthalate-based solid with unusually large pore volumes and surface area. Science (80-. ). 309:2040–2042. https://doi.org/10.1126/science.1116275

  40. Fujita M, Kwon J (1994) Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium( 11) and 4,Y-Bipyridine 1151–1152. https://doi.org/10.1021/ja00082a055

  41. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science (80-. ). 341. https://doi.org/10.1126/science.1230444

  42. Furukawa H, Gándara F, Zhang YB, Jiang J, Queen WL, Hudson MR, Yaghi OM (2014) Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 136:4369–4381. https://doi.org/10.1021/ja500330a

    Article  CAS  PubMed  Google Scholar 

  43. Garibay SJ, Cohen SM (2010) Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem Commun 46:7700–7702. https://doi.org/10.1039/c0cc02990d

    Article  CAS  Google Scholar 

  44. Gascon J, Corma A, Kapteijn F, Llabrés I, Xamena FX (2014) Metal organic framework catalysis: Quo vadis? ACS Catal 4:361–378. https://doi.org/10.1021/cs400959k

    Article  CAS  Google Scholar 

  45. Germann LS, Katsenis AD, Huskić I, Julien PA, Užarević K, Etter M, Farha OK, Friščić T, Dinnebier RE (2020) Real-time in situ monitoring of particle and structure evolution in the mechanochemical synthesis of UiO-66 metal-organic frameworks. Cryst Growth Des 20:49–54. https://doi.org/10.1021/acs.cgd.9b01477

    Article  CAS  Google Scholar 

  46. Getman RB, Bae Y, Wilmer CE, Snurr RQ, Carlo M (2012) Review and analysis of molecular simulations of methane , hydrogen , and acetylene storage in metal à organic frameworks 703–723.

    Google Scholar 

  47. Gkaniatsou E, Sicard C, Ricoux R, Mahy JP, Steunou N, Serre C (2017) Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection. Mater. Horizons 4:55–63. https://doi.org/10.1039/c6mh00312e

    Article  CAS  Google Scholar 

  48. Goesten MG, Kapteijn F, Gascon J (2013) Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal-organic frameworks. CrystEngComm 15:9249–9257. https://doi.org/10.1039/c3ce41241e

    Article  CAS  Google Scholar 

  49. Gu ZY, Yan XP (2010) Metal-organic framework MIL-101 for high-resolution gaschromatographic separation of xylene isomers and ethlbenzene. Angew. Chemie - Int. Ed. 49:1477–1480. https://doi.org/10.1002/anie.200906560

    Article  CAS  Google Scholar 

  50. Gutterød ES, Øien-ØDegaard S, Bossers K, Nieuwelink AE, Manzoli M, Braglia L, Lazzarini A, Borfecchia E, Ahmadigoltapeh S, Bouchevreau B, Lønstad-Bleken BT, Henry R, Lamberti C, Bordiga S, Weckhuysen BM, Lillerud KP, Olsbye U (2017) CO2 hydrogenation over Pt-containing UiO-67 Zr-MOFs—the base case. Ind Eng Chem Res 56:13206–13218. https://doi.org/10.1021/acs.iecr.7b01457

    Article  CAS  Google Scholar 

  51. Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S (2007) Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: Selective sorption and catalysis. J Am Chem Soc 129:2607–2614. https://doi.org/10.1021/ja067374y

    Article  CAS  PubMed  Google Scholar 

  52. Henschel A, Gedrich K, Kraehnert R, Kaskel S (2008) Catalytic properties of MIL-101. Chem Commun 4192–4194. https://doi.org/10.1039/b718371b

  53. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Férey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug deliveryand imaging. Nat Mater 9:172–178. https://doi.org/10.1038/nmat2608

    Article  CAS  PubMed  Google Scholar 

  54. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P (2012) Metal À organic frameworks in biomedicine 1232–1268

    Google Scholar 

  55. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780. https://doi.org/10.1021/ja710973k

    Article  CAS  PubMed  Google Scholar 

  56. Hu ML, Safarifard V, Doustkhah E, Rostamnia S, Morsali A, Nouruzi N, Beheshti S, Akhbari K (2018) Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous Mesoporous Mater 256:111–127. https://doi.org/10.1016/j.micromeso.2017.07.057

    Article  CAS  Google Scholar 

  57. Isaeva VI, Eliseev OL, Kazantsev RV, Chernyshev VV, Davydov PE, Saifutdinov BR, Lapidus AL, Kustov LM (2016) Fischer-Tropsch synthesis over MOF-supported cobalt catalysts (Co@MIL-53(Al)). Dalt. Trans. 45:12006–12014. https://doi.org/10.1039/c6dt01394e

    Article  CAS  Google Scholar 

  58. Jiang J, Gándara F, Zhang YB, Na K, Yaghi OM, Klemperer WG (2014) Superacidity in sulfated metal-organic framework-808. J Am Chem Soc 136:12844–12847. https://doi.org/10.1021/ja507119n

    Article  CAS  PubMed  Google Scholar 

  59. Jiang J, Yaghi OM (2015) Brønsted acidity in metal-organic frameworks. Chem Rev 115:6966–6997. https://doi.org/10.1021/acs.chemrev.5b00221

    Article  CAS  PubMed  Google Scholar 

  60. Juan-Alcañiz J, Gascon J, Kapteijn F (2012) Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J Mater Chem 22:10102–10119. https://doi.org/10.1039/c2jm15563j

    Article  CAS  Google Scholar 

  61. Juan-Alcañiz J, Ramos-Fernandez EV, Lafont U, Gascon J, Kapteijn F (2010) Building MOF bottles around phosphotungstic acid ships: one-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. J Catal 269:229–241. https://doi.org/10.1016/j.jcat.2009.11.011

    Article  CAS  Google Scholar 

  62. Jung DW, Yang DA, Kim J, Kim J, Ahn WS (2010) Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalt. Trans. 39:2883–2887. https://doi.org/10.1039/b925088c

    Article  CAS  Google Scholar 

  63. Kajiwara T, Fujii M, Tsujimoto M, Kobayashi K, Higuchi M, Tanaka K, Kitagawa S (2016) Photochemical reduction of low concentrations of CO 2 in a porous coordination polymer with a ruthenium(II)–CO complex. Angew. Chemie 128:2747–2750. https://doi.org/10.1002/ange.201508941

    Article  Google Scholar 

  64. Kalmutzki MJ, Hanikel N, Yaghi OM (2018) Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci Adv 4. https://doi.org/10.1126/sciadv.aat9180

  65. Kee MO, Yaghi OM (2012) Deconstructing the crystal structures of metal à organic frameworks and related materials into their underlying nets 675–702

    Google Scholar 

  66. Khan NA, Kang IJ, Seok HY, Jhung SH (2011) Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101. Chem Eng J 166:1152–1157. https://doi.org/10.1016/j.cej.2010.11.098

    Article  CAS  Google Scholar 

  67. Kim M, Cahill JF, Fei H, Prather KA, Cohen SM (2012) Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J Am Chem Soc 134:18082–18088. https://doi.org/10.1021/ja3079219

    Article  CAS  PubMed  Google Scholar 

  68. Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM (2015) Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett 6:4073–4082. https://doi.org/10.1021/acs.jpclett.5b01559

    Article  CAS  PubMed  Google Scholar 

  69. Kresge et al (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:167–169

    Article  Google Scholar 

  70. Kurmoo M (2009) Magnetic metal–organic frameworks. https://doi.org/10.1039/b804757j

  71. Li J, Sculley J, Zhou H (2012) Metal À organic frameworks for separations 869–932

    Google Scholar 

  72. Li R, Zhang W, Zhou K (2018) Metal–organic-framework-based catalysts for photoreduction of CO2. Adv Mater 30:1–31. https://doi.org/10.1002/adma.201705512

    Article  CAS  Google Scholar 

  73. Li Z, Peters AW, Bernales V, Ortuño MA, Schweitzer NM, Destefano MR, Gallington LC, Platero-Prats AE, Chapman KW, Cramer CJ, Gagliardi L, Hupp JT, Farha OK (2017) Metal-organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature. ACS Cent Sci 3:31–38. https://doi.org/10.1021/acscentsci.6b00290

    Article  CAS  PubMed  Google Scholar 

  74. Li Z, Schweitzer NM, League AB, Bernales V, Peters AW, Getsoian AB, Wang TC, Miller JT, Vjunov A, Fulton JL, Lercher JA, Cramer CJ, Gagliardi L, Hupp JT, Farha OK (2016) Sintering-resistant single-site nickel catalyst supported by metal-organic framework. J Am Chem Soc 138:1977–1982. https://doi.org/10.1021/jacs.5b12515

    Article  CAS  PubMed  Google Scholar 

  75. Liang J, Liang Z, Zou R, Zhao Y (2017) Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv Mater 29:1–21. https://doi.org/10.1002/adma.201701139

    Article  CAS  Google Scholar 

  76. Lillerud KP, Olsbye U, Tilset M (2010) Designing heterogeneous catalysts by incorporating enzyme-like functionalities into MOFs. Top Catal 53:859–868. https://doi.org/10.1007/s11244-010-9518-4

    Article  CAS  Google Scholar 

  77. Liqing Ma CA, WL (2009) Enantioselective catalysis with homochiral metal—organic frameworks. https://doi.org/10.1039/b807083k

  78. Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391. https://doi.org/10.1021/ja7106146

    Article  CAS  PubMed  Google Scholar 

  79. Liu HK, Tsao TH, Zhang YT, Lin CH (2009) Microwave synthesis and single-crystal-to-single-crystal transformation of magnesium coordination polymers exhibiting selective gas adsorption and luminescence properties. Cryst Eng Comm 11:1462–1468. https://doi.org/10.1039/b819559e

    Article  CAS  Google Scholar 

  80. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY (2014) Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43:6011–6061. https://doi.org/10.1039/c4cs00094c

    Article  CAS  PubMed  Google Scholar 

  81. Liu J, Zhu DD, Guo CX, Vasileff A, Qiao SZ (2017) Design strategies toward advanced mof-derived electrocatalysts for energy-conversion reactions. Adv Energy Mater 7:1–26. https://doi.org/10.1002/aenm.201700518

    Article  CAS  Google Scholar 

  82. Liu Y, Su Y, Quan X, Fan X, Chen S, Yu H, Zhao H, Zhang Y, Zhao J (2018) Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal 8:1186–1191. https://doi.org/10.1021/acscatal.7b02165

    Article  CAS  Google Scholar 

  83. Llabre FX (2010) Engineering metal organic frameworks for heterogeneous catalysis 4606–4655

    Google Scholar 

  84. Llabrés i Xamena FX, Abad A, Corma A, Garcia H (2007) MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF. J Catal 250:294–298. https://doi.org/10.1016/j.jcat.2007.06.004

  85. Llewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, Weireld GD, Chang J, Hong D, Hwang YK, Jhung SH (2008) Llewellyn 2008:7245–7250

    Google Scholar 

  86. Luz I, Rösler C, Epp K, Llabrés I Xamena FX, Fischer RA (2015) Pd@UiO-66-Type MOFs prepared by chemical vapor infiltration as shape-selective hydrogenation catalysts. Eur J Inorg Chem 2015:3904–3912. https://doi.org/10.1002/ejic.201500299

  87. Lykourinou V, Chen Y, Wang XS, Meng L, Hoang T, Ming LJ, Musselman RL, Ma S (2011) Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J Am Chem Soc 133:10382–10385. https://doi.org/10.1021/ja2038003

    Article  CAS  PubMed  Google Scholar 

  88. Ma S, Goenaga GA, Call AV, Liu DJ (2011) Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem. - A Eur. J. 17:2063–2067. https://doi.org/10.1002/chem.201003080

    Article  CAS  Google Scholar 

  89. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136:13925–13931. https://doi.org/10.1021/ja5082553

    Article  CAS  PubMed  Google Scholar 

  90. Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P, Kapteijn F, Gascon J (2012) Electrochemical synthesis of some archetypical Zn 2+, Cu 2+, and Al 3+ metal organic frameworks. Cryst Growth Des 12:3489–3498. https://doi.org/10.1021/cg300552w

    Article  CAS  Google Scholar 

  91. McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg 2(dobpdc). J Am Chem Soc 134:7056–7065. https://doi.org/10.1021/ja300034j

    Article  CAS  PubMed  Google Scholar 

  92. Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267. https://doi.org/10.1002/adma.201002854

    Article  CAS  PubMed  Google Scholar 

  93. Meilikhov M, Yusenko K, Esken D, Turner S, Van Tendeloo G, Fischer RA (2010) Metals@MOFs—loading MOFs with metal nanoparticles for hybrid functions. Eur J Inorg Chem 3701–3714. https://doi.org/10.1002/ejic.201000473

  94. Metzger ED, Brozek CK, Comito RJ, Dinca M (2016) Selective dimerization of ethylene to 1-butene with a porous catalyst. ACS Cent Sci 2:148–153. https://doi.org/10.1021/acscentsci.6b00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miner EM, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincə M (2016) Electrochemical oxygen reduction catalysed by Ni3 (hexaiminotriphenylene)2. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms10942

    Article  CAS  Google Scholar 

  96. Mohamed Eddaoudi David B. Moler, H.L.I.B.C.T.M.R.M.O, Yaghi OM (2001) Modular chemistry: secondary building units as a basis forbuilding units as a basis for robust metal-organic carboxylate frameworks. Acc Chem Res 34:319–330

    Google Scholar 

  97. MSc. Khan AH (2020) Solid-state NMR study of nitric oxide adsorption in carboxylate based MOFs

    Google Scholar 

  98. Natarajan S, Kim K, Yoon M, Suh K, Natarajan S, Kim K (2013) Proton conduction in metal—organic frameworks and related modularly built porous solids 2688–2700. https://doi.org/10.1002/anie.201206410

  99. Noh H, Cui Y, Peters AW, Pahls DR, Ortuno MA, Vermeulen NA, Cramer CJ, Gagliardi L, Hupp JT, Farha OK (2016) An exceptionally stable metal-organic framework supported molybdenum(VI) oxide catalyst for cyclohexene epoxidation. J Am Chem Soc 138:14720–14726. https://doi.org/10.1021/jacs.6b08898

    Article  CAS  PubMed  Google Scholar 

  100. Omar M, Arbor A, Arbor A (2003) (12) United States Patent 122, 12487–12496

    Google Scholar 

  101. Oozeerally R, Burnett DL, Chamberlain TW, Walton RI, Degirmenci V (2018) Exceptionally efficient and recyclable heterogeneous metal-organic framework catalyst for glucose isomerization in water. Chem Cat Chem 10:706–709. https://doi.org/10.1002/cctc.201701825

    Article  CAS  PubMed  Google Scholar 

  102. Otake KI, Cui Y, Buru CT, Li Z, Hupp JT, Farha OK (2018) Single-atom-based vanadium oxide catalysts supported on metal-organic frameworks: selective alcohol oxidation and structure-activity relationship. J Am Chem Soc 140:8652–8656. https://doi.org/10.1021/jacs.8b05107

    Article  CAS  PubMed  Google Scholar 

  103. Garcia-Garcia P, Muller M, AC (2015) MOF catalysis in perspective to their homogeneous counterparts and conventional solid catalysts. J Mater Chem C 3:10715–10722. https://doi.org/10.1039/b000000x

  104. Pan D, Xi C, Li Z, Wang L, Chen Z, Lu B, Wu M (2013) Electrophoretic fabrication of highly robust, efficient, and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays. J Mater Chem A 1:3551–3555. https://doi.org/10.1039/c3ta00059a

    Article  CAS  Google Scholar 

  105. Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal-organic framework. Cryst Eng Comm 8:211–214. https://doi.org/10.1039/b513750k

    Article  CAS  Google Scholar 

  106. Ranocchiari M, Bokhoven JAV (2011) Catalysis by metal-organic frameworks: Fundamentals and opportunities. Phys Chem Chem Phys 13:6388–6396. https://doi.org/10.1039/c0cp02394a

    Article  CAS  PubMed  Google Scholar 

  107. Rimoldi M, Nakamura A, Vermeulen NA, Henkelis JJ, Blackburn AK, Hupp JT, Stoddart JF, Farha OK (2016) A metal-organic framework immobilised iridium pincer complex. Chem Sci 7:4980–4984. https://doi.org/10.1039/c6sc01376g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rodenas T, Van Dalen M, García-Pérez E, Serra-Crespo P, Zornoza B, Kapteijn F, Gascon J (2014) Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv Funct Mater 24:249–256. https://doi.org/10.1002/adfm.201203462

    Article  CAS  Google Scholar 

  109. Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315. https://doi.org/10.1021/ja056639q

    Article  CAS  PubMed  Google Scholar 

  110. Rowsell JLC, Yaghi OM (2004) Metal—organic frameworks: a new class of porous materials 73:3–14. https://doi.org/10.1016/j.micromeso.2004.03.034

  111. Rungtaweevoranit B, Baek J, Araujo JR, Archanjo BS, Choi KM, Yaghi OM, Somorjai GA (2016) Copper nanocrystals encapsulated in Zr-based Metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett 16:7645–7649. https://doi.org/10.1021/acs.nanolett.6b03637

    Article  CAS  PubMed  Google Scholar 

  112. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science (80-. ). 283:1148

    Google Scholar 

  113. Sabouni R, Kazemian H, Rohani S (2012) Microwave synthesis of the CPM-5 metal organic framework. Chem Eng Technol 35:1085–1092. https://doi.org/10.1002/ceat.201100626

    Article  CAS  Google Scholar 

  114. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–986. https://doi.org/10.1038/35010088

    Article  CAS  PubMed  Google Scholar 

  115. Sharma RK, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zbořil R, Varma RS, Antonietti M, Gawande MB (2020) Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater. Horizons 7:411–454. https://doi.org/10.1039/c9mh00856j

    Article  CAS  Google Scholar 

  116. Shearer GC, Chavan S, Bordiga S, Svelle S, Olsbye U, Lillerud KP (2016) Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem Mater 28:3749–3761. https://doi.org/10.1021/acs.chemmater.6b00602

    Article  CAS  Google Scholar 

  117. Shulman A, Zanghellini E, Palmqvist A (2010) Reversible sorption of water in the crystalline microporous semiconductor K-SBC-1. Microporous Mesoporous Mater 132:128–131. https://doi.org/10.1016/j.micromeso.2010.02.009

    Article  CAS  Google Scholar 

  118. Stassen I, Styles M, Van Assche T, Campagnol N, Fransaer J, Denayer J, Tan JC, Falcaro P, De Vos D, Ameloot R (2015) Electrochemical film deposition of the zirconium metal-organic framework uio-66 and application in a miniaturized sorbent trap. Chem Mater 27:1801–1807. https://doi.org/10.1021/cm504806p

    Article  CAS  Google Scholar 

  119. States U (2004) (12) Patent Application Publication ( 10 ) Pub . No .: US 2004/0092606A1 1, 2002–2005

    Google Scholar 

  120. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969. https://doi.org/10.1021/cr200304e

    Article  CAS  PubMed  Google Scholar 

  121. Suh MP, Park HJ, Prasad TK, Lim D (2017) Hydrogen storage in metal à organic frameworks 782–835

    Google Scholar 

  122. Sumida K, Rogow DL, Mason JA, Mcdonald TM, Bloch ED, Herm ZR, Bae T, Long R (2012) Carbon dioxide capture in metal à organic frameworks 724–781. https://doi.org/10.1021/cr2003272

  123. Sun CY, Liu SX, Liang DD, Shao KZ, Ren YH, Su ZM (2009) Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. J Am Chem Soc 131:1883–1888. https://doi.org/10.1021/ja807357r

    Article  CAS  PubMed  Google Scholar 

  124. Tan D, García F (2019) Main group mechanochemistry: from curiosity to established protocols. Chem Soc Rev 48:2274–2292. https://doi.org/10.1039/c7cs00813a

    Article  CAS  PubMed  Google Scholar 

  125. Tanabe KK, Cohen SM (2011) Postsynthetic modification of metal–organic frameworks—a progress report. Chem Soc Rev 40:498–519. https://doi.org/10.1039/c0cs00031k

    Article  CAS  PubMed  Google Scholar 

  126. Ulrich Muller, Hermann Putter, Michael Hesse, M.S (2007) Method For electrochemical production of a crystalline porous material organic skeleton material

    Google Scholar 

  127. Valvekens P, Vermoortele F, De Vos D (2013) Metal-organic frameworks as catalysts: the role of metal active sites. Catal Sci Technol 3:1435–1445. https://doi.org/10.1039/c3cy20813c

    Article  CAS  Google Scholar 

  128. Venkataraman D, Moore JS, Gardner GB, Lee S (1995) Zeolite-like behavior of a coordination network. J Am Chem Soc 117:11600–11601. https://doi.org/10.1021/ja00151a034

    Article  CAS  Google Scholar 

  129. Volkringer C, Cohen SM (2010) Generating reactive MILs: isocyanate- and isothiocyanate-bearing mils through postsynthetic modification. Angew Chemie 122:4748–4752. https://doi.org/10.1002/ange.201001527

    Article  Google Scholar 

  130. Volkringer C, Popov D, Loiseau T, Férey G, Burghammer M, Riekel C, Haouas M, Taulelle F (2009) Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminium trimesate MIL-100. Chem Mater 21:5695–5697. https://doi.org/10.1021/cm901983a

    Article  CAS  Google Scholar 

  131. Wang B, Liu W, Zhang W, Liu J (2017) Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size-and shape-selective reactions. Nano Res 10:3826–3835. https://doi.org/10.1007/s12274-017-1595-2

    Article  CAS  Google Scholar 

  132. Wang C, Wang JL, Lin W (2012) Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. J Am Chem Soc 134:19895–19908. https://doi.org/10.1021/ja310074j

    Article  CAS  PubMed  Google Scholar 

  133. Wang TC, Vermeulen NA, Kim IS, Martinson ABF, Fraser Stoddart J, Hupp JT, Farha OK (2016) Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nat Protoc 11:149–162. https://doi.org/10.1038/nprot.2016.001

    Article  CAS  PubMed  Google Scholar 

  134. Wang Z, Cohen SM (2009) Postsynthetic modification of metal–organic frameworks. Chem Soc Rev 38:1315–1329. https://doi.org/10.1039/b802258p

    Article  CAS  PubMed  Google Scholar 

  135. Wu HB, Xia BY, Yu L, Yu XY, Lou XW (2015) Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun 6:1–8. https://doi.org/10.1038/ncomms7512

    Article  CAS  Google Scholar 

  136. Wu CD, Hu A, Zhang L, Lin W (2005) A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc 127:8940–8941. https://doi.org/10.1021/ja052431t

    Article  CAS  PubMed  Google Scholar 

  137. Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W (2013) Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532. https://doi.org/10.1021/ja404514r

    Article  CAS  PubMed  Google Scholar 

  138. Xia W, Mahmood A, Zou R, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866. https://doi.org/10.1039/c5ee00762c

    Article  CAS  Google Scholar 

  139. Xiao JD, Jiang HL (2018) Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res. https://doi.org/10.1021/acs.accounts.8b00521

    Article  PubMed  PubMed Central  Google Scholar 

  140. Xu C, Liu H, Li D, Su JH, Jiang HL (2018) Direct evidence of charge separation in a metal-organic framework: Efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer. Chem Sci 9:3152–3158. https://doi.org/10.1039/c7sc05296k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714. https://doi.org/10.1038/nature01650

    Article  CAS  PubMed  Google Scholar 

  142. Yang D, Odoh SO, Wang TC, Farha OK, Hupp JT, Cramer CJ, Gagliardi L, Gates BC (2015) Metal-organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes. J Am Chem Soc 137:7391–7396. https://doi.org/10.1021/jacs.5b02956

    Article  CAS  PubMed  Google Scholar 

  143. Yang D, Ortuño MA, Bernales V, Cramer CJ, Gagliardi L, Gates BC (2018) Structure and dynamics of Zr6O8 metal-organic framework node surfaces probed with ethanol dehydration as a catalytic test reaction. J Am Chem Soc 140:3751–3759. https://doi.org/10.1021/jacs.7b13330

    Article  CAS  PubMed  Google Scholar 

  144. Zhang H, Wang T, Wang J, Liu H, Dao TD, Li M, Liu G, Meng X, Chang K, Shi L, Nagao T, Ye J (2016) Surface-plasmon-enhanced photodriven co2reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater 28:3703–3710. https://doi.org/10.1002/adma.201505187

    Article  CAS  PubMed  Google Scholar 

  145. Zhang JW, Zhang HT, Du ZY, Wang X, Yu SH, Jiang HL (2014) Water-stable metal–organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun 50:1092–1094. https://doi.org/10.1039/c3cc48398c

    Article  CAS  Google Scholar 

  146. Zhang K, Kirlikovali KO, Le QV, Jin Z, Varma RS, Jang HW, Farha OK, Shokouhimehr M (2020) Extended metal-organic frameworks on diverse supports as electrode nanomaterials for electrochemical energy storage. ACS Appl. Nano Mater. 3:3964–3990. https://doi.org/10.1021/acsanm.0c00702

    Article  CAS  Google Scholar 

  147. Zhang M, Huang YL, Wang JW, Lu TB (2016) A facile method for the synthesis of a porous cobalt oxide-carbon hybrid as a highly efficient water oxidation catalyst. J Mater Chem A 4:1819–1827. https://doi.org/10.1039/c5ta07813j

    Article  CAS  Google Scholar 

  148. Zhang T, Lin W (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993. https://doi.org/10.1039/c4cs00103f

    Article  CAS  PubMed  Google Scholar 

  149. Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y (2017) Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 139:8078–8081. https://doi.org/10.1021/jacs.7b02736

    Article  CAS  PubMed  Google Scholar 

  150. Zhou Z, Li X, Wang Y, Luan Y, Li X, Du X (2020) Growth of Cu-BTC MOFs on dendrimer-like porous silica nanospheres for the catalytic aerobic epoxidation of olefins. New J Chem 44:14350–14357. https://doi.org/10.1039/d0nj02672g

    Article  CAS  Google Scholar 

  151. Zhu B, Xia D, Zou R (2018) Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coord Chem Rev 376:430–448. https://doi.org/10.1016/j.ccr.2018.07.020

    Article  CAS  Google Scholar 

  152. Zhu J, Li PZ, Guo W, Zhao Y, Zou R (2018) Titanium-based metal–organic frameworks for photocatalytic applications. Coord Chem Rev 359:80–101. https://doi.org/10.1016/j.ccr.2017.12.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varma, R.S., Baul, A., Wadhwa, R., Gulati, S. (2022). Introduction to Metal-Organic Frameworks (MOFs). In: Gulati, S. (eds) Metal-Organic Frameworks (MOFs) as Catalysts. Springer, Singapore. https://doi.org/10.1007/978-981-16-7959-9_1

Download citation

Publish with us

Policies and ethics