Skip to main content
Log in

The Mechanism of Alkane Selective Oxidation by the M1 Phase of Mo–V–Nb–Te Mixed Metal Oxides: Suggestions for Improved Catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We report here first principles predictions (density functional theory with periodic boundary conditions) of the structures, mechanisms, and activation barriers for the catalytic activation and functionalization of propane by the M1 phase of the Mitsubishi-BP America generation of Mo–V–Nb–Te–O mixed metal oxide (MMO) catalysts. Our calculations show that the reduction-coupled oxo activation (ROA) principle, which we reported at Irsee VI to play the critical role for the selective oxidation of n-butane to maleic anhydride by vanadium phosphorous oxide, also plays the critical role for the MMO activation of propane, as speculated during Irsee VI. However for MMO, this ROA principle involves Te=O and V rather than P=O and V. The ability of the Te=O bond to activate the propane CH bond depends sensitively upon the number of V atoms that are coupled through a bridging O to the Te=O center. Based on this ROA mechanism, we suggest synthetic procedures aimed at developing a single phase MMO catalyst with dramatically improved selectivity for ammoxidation. We also suggest a modified single phase composition suitable for simultaneous oxidative dehydrogenation of ethane and propane to ethene and propene, respectively, which is becoming more important with the increase in petroleum fracking. Moreover, we also suggest some organometallic molecules that activate alkane CH bonds through the ROA principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Cheng MJ, Nielsen RJ, Tahir-Kheli J, Goddard WA (2011) The magnetic and electronic structure of vanadyl pyrophosphate from density functional theory. Phys Chem Chem Phys 13:9831–9838

    Article  CAS  Google Scholar 

  2. Cheng MJ, Goddard WA, Fu R (2014) The reduction-coupled oxo activation (ROA) mechanism responsible for the catalytic selective activation and functionalization of n-butane to maleic anhydride by vanadium phosphate oxide. Top Catal 57:1171–1187

    Article  CAS  Google Scholar 

  3. Cheng MJ, Goddard WA (2013) The critical role of phosphate in vanadium phosphate oxide for the catalytic activation and functionalization of n-butane to maleic anhydride. J Am Chem Soc 135:4600–4603

    Article  CAS  Google Scholar 

  4. Li X, Buttrey DJ, Blom DA, Vogt T (2011) Improvement of the structural model for the M1 phase Mo–V–Nb–Te–O propane (amm)oxidation catalyst. Top Catal 54:614–626

    Article  CAS  Google Scholar 

  5. Cheng MJ, Goddard WA (2015) In silico design of highly selective Mo–V–Te–Nb–O mixed metal oxide catalysts for ammoxidation and oxidative dehydrogenation of propane and ethane. J Am Chem Soc 137:13224–13227

    Article  CAS  Google Scholar 

  6. Cheng MJ, Fu R, Goddard WA (2014) Design and validation of non-metal oxo complexes for C–H activation. Chem Commun 50:1748–1750

    Article  CAS  Google Scholar 

  7. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  8. Garrity KF, Bennett JW, Rabe KM, Vanderbilt D (2014) Pseudopotentials for high-throughput DFT calculations. Comput Mater Sci 81:446–452

    Article  CAS  Google Scholar 

  9. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  10. Holmberg J, Grasselli RK, Andersson A (2004) Catalytic behaviour of M1, M2, and M1/M2 physical mixtures of the Mo–V–Nb–Te-oxide system in propane and propene ammoxidation. Appl Catal A 270:121–134

    Article  CAS  Google Scholar 

  11. Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P, Lugmair CG, Volpe AF, Weingand T (2003) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi–Mo–O-x to Mo–V–Nb–(Te, Sb)–O-x. Top Catal 23:5–22

    Article  CAS  Google Scholar 

  12. Centi G, Trifiro F, Ebner JR, Franchetti VM (1988) Mechanistic aspects of maleic-anhydride synthesis from C4-hydrocarbons over phosphorus vanadium-oxide. Chem Rev 88:55–80

    Article  CAS  Google Scholar 

  13. Saito T, Terashima T, Azuma M, Takano M, Goto T, Ohta H, Utsumi W, Bordet P, Johnston DC (2000) Single crystal growth of the high pressure phase of (VO)(2)P2O7 at 3 GPa. J Solid State Chem 153:124–131

    Article  CAS  Google Scholar 

  14. Busca G, Centi G, Trifiro F, Lorenzelli V (1986) Surface-acidity of vanadyl pyrophosphate, active phase in normal-butane selective oxidation. J Phys Chem 90:1337–1344

    Article  CAS  Google Scholar 

  15. Schuurman Y, Gleaves JT (1994) Activation of vanadium phosphorus oxide catalysts for alkane oxidation—the influence of the oxidation-state on catalyst selectivity. Ind Eng Chem Res 33:2935–2941

    Article  CAS  Google Scholar 

  16. Joly JP, Mehier C, Bere KE, Abon M (1998) TPD study of labile oxygen on a (VO)(2)P2O7 catalyst active in n-butane partial oxidation. Appl Catal A 169:55–63

    Article  CAS  Google Scholar 

  17. Agaskar PA, Decaul L, Grasselli RK (1994) A molecular-level mechanism of n-butane oxidation to maleic-anhydride over vanadyl pyrophosphate. Catal Lett 23:339–351

    Article  CAS  Google Scholar 

  18. Volta JC (1996) Dynamic processes on vanadium phosphorous oxides for selective alkane oxidation. Catal Today 32:29–36

    Article  CAS  Google Scholar 

  19. Hutchings GJ, Desmartinchomel A, Olier R, Volta JC (1994) Role of the product in the transformation of a catalyst to its active state. Nature 368:41–45

    Article  CAS  Google Scholar 

  20. Coulston GW, Bare SR, Kung H, Birkeland K, Bethke GK, Harlow R, Herron N, Lee PL (1997) The kinetic significance of V5+ in n-butane oxidation catalyzed by vanadium phosphates. Science 275:191–193

    Article  CAS  Google Scholar 

  21. Tachez M, Theobald F, Bordes E (1981) A structural explanation for the polymorphism of the alpha-form of anhydrous vanadyl phosphate. J Solid State Chem 40:280–283

    Article  CAS  Google Scholar 

  22. Jordan BD, Calvo C (1976) Alpha-V1. 08P0. 92O5 at 22 °C. Acta Crystallogr B 32:2899–2900

    Article  Google Scholar 

  23. Shimoda T, Okuhara T, Misono M (1985) Preparation of vanadium-phosphorus mixed-oxide (P/V = 1) catalysts and their application to oxidation of butane to maleic-anhydride. Bull Chem Soc Jpn 58:2163–2171

    Article  CAS  Google Scholar 

  24. Koyano G, Okuhara T, Misono M (1998) Structural changes of surface layer of vanadyl pyrophosphate catalysts by oxidation–reduction and their relationships with selective oxidation of n-butane. J Am Chem Soc 120:767–774

    Article  CAS  Google Scholar 

  25. Grasselli RK (2005) Selectivity issues in (amm)oxidation catalysis. Catal Today 99:23–31

    Article  CAS  Google Scholar 

  26. Goddard WA, Liu LC, Mueller JE, Pudar S, Nielsen RJ (2011) Structures, mechanisms, and kinetics of ammoxidation and selective oxidation of propane over the M2 phase of MoVNbTeO catalysts. Top Catal 54:659–668

    Article  CAS  Google Scholar 

  27. Chenoweth K, van Duin ACT, Goddard WA (2009) The reaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: application to the Mo3VOx catalyst. Angew Chem Int Edit 48:7630–7634

    Article  CAS  Google Scholar 

  28. Fu G, Xu X, Sautet P (2012) Vanadium distribution in four-component Mo–V–Te–Nb mixed-oxide catalysts from first principles: how to explore the numerous configurations? Angew Chem Int Edit 51:12854–12858

    Article  CAS  Google Scholar 

  29. Grasselli RK, Buttrey DJ, DeSanto P, Burrington JD, Lugmair CG, Volpe AF, Weingand T (2004) Active centers in Mo–V–Nb–Te–O-x (amm)oxidation catalysts. Catal Today 91-2:251–258

    Article  Google Scholar 

  30. Guliants VV, Bhandari R, Brongersma HH, Knoester A, Gaffney AM, Han S (2005) A study of the surface region of the Mo–V–Te–O catalysts for propane oxidation to acrylic acid. J Phys Chem B 109:10234–10242

    Article  CAS  Google Scholar 

  31. Ueda W, Vitry D, Katou T (2005) Crystalline Mo–V–O based complex oxides as selective oxidation catalysts of propane. Catal Today 99:43–49

    Article  CAS  Google Scholar 

  32. Oliver JM, Nieto JML, Botella P (2004) Selective oxidation and ammoxidation of propane on a Mo–V–Te–Nb–O mixed metal oxide catalyst: a comparative study. Catal Today 96:241–249

    Article  CAS  Google Scholar 

  33. Jang YH, Goddard WA (2001) Selective oxidation and ammoxidation of propene on bismuth molybdates, ab initio calculations. Top Catal 15:273–289

    Article  CAS  Google Scholar 

  34. Jang YH, Goddard WA (2002) Mechanism of selective oxidation and ammoxidation of propene on bismuth molybdates from DFT calculations on model clusters. J Phys Chem B 106:5997–6013

    Article  CAS  Google Scholar 

  35. Grasselli RK (2002) Fundamental principles of selective heterogeneous oxidation catalysis. Top Catal 21:79–88

    Article  CAS  Google Scholar 

  36. Grasselli RK, Lugmair CG, Volpe AF (2011) Towards an understanding of the reaction pathways in propane ammoxidation based on the distribution of elements at the active centers of the M1 phase of the MoV(Nb, Ta)TeO system. Top Catal 54:595–604

    Article  CAS  Google Scholar 

  37. Grasselli RK, Volpe AF (2014) Catalytic consequences of a revised distribution of key elements at the active centers of the M1 phase of the MoVNbTeOx system. Top Catal 57:1124–1137

    Article  CAS  Google Scholar 

  38. Nieto JML, Botella P, Vazquez MI, Vazquez MI, Dejoz A (2002) The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts. Chem Commun 17:1906–1907

    Article  Google Scholar 

  39. Hashiguchi BG, Bischof SM, Konnick MM, Periana RA (2012) Designing catalysts for functionalization of unactivated C–H bonds based on the CH activation reaction. Acc Chem Res 45:885–898

    Article  CAS  Google Scholar 

  40. Shilov AE, Shul’pin GB (1997) Activation of C–H bonds by metal complexes. Chem Rev 97:2879–2932

    Article  CAS  Google Scholar 

  41. Groves JT (1985) Key elements of the chemistry of cytochrome-P-450—the oxygen rebound mechanism. J Chem Educ 62:928–931

    Article  CAS  Google Scholar 

  42. Bauer RC, Gloaguen Y, Lutz M, Reek JNH, de Bruin B, van der Vlugt JI (2011) Pincer ligands with an all-phosphorus donor set: subtle differences between rhodium and palladium. Dalton Trans 40:8822–8829

    Article  CAS  Google Scholar 

  43. Derrah EJ, Ladeira S, Bouhadir G, Miqueu K, Bourissou D (2011) Original phenyl-P(O) bond cleavage at palladium(0): a combined experimental and computational study. Chem Commun 47:8611–8613

    Article  CAS  Google Scholar 

  44. Derrah EJ, Martin C, Ladeira S, Miqueu K, Bouhadir G, Bourissou D (2012) Coordination of a diphosphine-phosphine oxide to Au, Ag and Rh: when polyfunctionality rhymes with versatility. Dalton Trans 41:14274–14280

    Article  CAS  Google Scholar 

  45. Gloaguen Y, Jacobs W, de Bruin B, Lutz M, van der Vlugt JI (2013) Reactivity of a mononuclear iridium(I) species bearing a terminal phosphido fragment embedded in a triphosphorus ligand. Inorg Chem 52:1682–1684

    Article  CAS  Google Scholar 

  46. Mazzeo M, Lamberti M, Massa A, Scettri A, Pellecchia C, Peters JC (2008) Phosphido pincer complexes of palladium as new efficient catalysts for allylation of aldehydes. Organometallics 27:5741–5743

    Article  CAS  Google Scholar 

  47. Mazzeo M, Strianese M, Kuhl O, Peters JC (2011) Phosphido pincer complexes of platinum: synthesis, structure and reactivity. Dalton Trans 40:9026–9033

    Article  CAS  Google Scholar 

  48. Pan BF, Bezpalko MW, Foxman BM, Thomas CM (2011) Coordination of an N-heterocyclic phosphenium containing pincer ligand to a Co(CO)(2) fragment allows oxidation to form an unusual N-heterocyclic phosphinito species. Organometallics 30:5560–5563

    Article  CAS  Google Scholar 

  49. Pan BF, Bezpalko MW, Foxman BM, Thomas CM (2012) Heterolytic addition of E–H bonds across Pt–P bonds in Pt N-heterocyclic phosphenium/phosphido complexes. Dalton Trans 41:9083–9090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (CHE-1214158, Carol Bessel and Carlos Murillo). We thank Robert Grasselli, Doug Buttrey, Robert Nielsen, and Ross Fu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Goddard III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, MJ., Goddard, W.A. The Mechanism of Alkane Selective Oxidation by the M1 Phase of Mo–V–Nb–Te Mixed Metal Oxides: Suggestions for Improved Catalysts. Top Catal 59, 1506–1517 (2016). https://doi.org/10.1007/s11244-016-0669-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0669-9

Keywords

Navigation