Skip to main content
Log in

A molecular level mechanism ofn-butane oxidation to maleic anhydride over vanadyl pyrophosphate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A molecular level mechanism is proposed for the highly selective 14-e oxidative transformation ofn-butane to maleic anhydride on the surface of vanadyl pyrophosphate. The mechanism suggests that the dimeric active sites assume at any given time, one of four possible interconvertible states which differ from each other in the number of available oxygen atoms and the formal oxidation states of the individual vanadium atoms. The relative ratios of active sites in each of the four possible states are dictated by the reaction conditions, the redox properties of the reacting gases and the structure of the vanadyl pyrophosphate active surface. A crucial feature of the mechanism is a “pseudo-ozonide” surface species formed by the interaction of a chemisorbed dioxygen molecule and an adjacent metal-oxo group. This unusual species is responsible for the initial activation of then-butane, which occurs when the chemisorbed dioxygen abstracts an H-atom from the alkane and the adjacent metal-oxo group reacts with the incipient alkyl radical to form an alkoxy group. The proposed mechanism is entirely consistent with literature reports describing the behaviour of (VO)2P2O7 in flow, pulse and TAP reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Centi, Catal. Today 16 (1993) 1.

    Google Scholar 

  2. G. Centi, F. Trifiró, J.R. Ebner and V.M. Franchetti, Chem. Rev. 88 (1988) 55.

    Google Scholar 

  3. G. Busca, G. Centi and F. Trifiro, Appl. Catal. 25 (1986) 265.

    Google Scholar 

  4. J. Ziolkowski, E. Bordes and P. Courtine, J. Catal. 122 (1990) 126.

    Google Scholar 

  5. R.K. Grasselli, J. Chem. Educ. 63 (1986) 216.

    Google Scholar 

  6. J.R. Ebner and M.R. Thompson, in:Studies in Surface Science and Catalysis, Vol. 67 (Elsevier, Amsterdam, 1991) p. 31.

    Google Scholar 

  7. K. Inumaru, T. Okuhara and M. Misono, Chem. Lett. (1992) 1955.

  8. J.L. Callahan and R.K. Grasselli, AIChE9 (1963) 755.

  9. J.R. Ebner and J.T. Gleaves, in:Oxygen Complexes and Oxygen Activation by Transition Metals, eds. A.E. Martell and D.T. Sawyer (Plenum Press, New York, 1988) p. 273.

    Google Scholar 

  10. B. Schiøtt, K.A. Jørgensen and R. Hoffmann, J. Phys. Chem. 95 (1991) 2297.

    Google Scholar 

  11. M.A. Pepera, J.L. Callahan, M.J. Desmond, E.C. Milberger, P.R. Blum and N.J. Bremer, J. Am. Chem. Soc. 107 (1985) 4883.

    Google Scholar 

  12. H.S. Horowitz, C.M. Blackstone, A.W. Sleight and G. Teufer, Appl. Catal. 38 (1988) 193.

    Google Scholar 

  13. J.S. Jung, E. Bordes and P. Courtine, in:Studies in Surface Science and Catalysis, Vol. 21 (Elsevier, Amsterdam, 1985) p. 345.

    Google Scholar 

  14. J.R. Ebner and M.R. Thompson, Catal. Today 16 (1993) 51.

    Google Scholar 

  15. R.S. Drago and R.H. Beer, Inorg. Chim. Acta 198-200 (1992) 359.

    Google Scholar 

  16. J.T. Gleaves, J.R. Ebner and T.C. Kuechler, Catal. Rev.-Sci. Eng. 30 (1988) 49.

    Google Scholar 

  17. A. Aguero, R.P.A. Sneeden and J.C. Volta, in:Heterogeneous Catalysis and Fine Chemicals, ed. M. Guisnet (Elsevier, Amsterdam, 1988) p. 353.

    Google Scholar 

  18. G. Centi, G. Golinelli and G. Busca, J. Phys. Chem. 94 (1990) 6813.

    Google Scholar 

  19. J. March,Advanced Organic Chemistry (Wiley, New York, 1985) p. 967.

    Google Scholar 

  20. B. Schiøtt and K.A. Jørgensen, in:Dioxygen Activation and Homogeneous Catalytic Oxidation, ed. L.I. Simandi (Elsevier, Amsterdam, 1991) p. 655.

    Google Scholar 

  21. R.M. Contractor and A.W. Sleight, Catal. Today 3 (1988) 175.

    Google Scholar 

  22. F. Cavani, G. Centi, F. Triffirò and R.K. Grasselli, Catal. Today 3 (1988) 185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agaskar, P.A., De Caul, L. & Grasselli, R.K. A molecular level mechanism ofn-butane oxidation to maleic anhydride over vanadyl pyrophosphate. Catal Lett 23, 339–351 (1994). https://doi.org/10.1007/BF00811368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00811368

Keywords

Navigation