Skip to main content
Log in

Heterogeneous Oxygen-Containing Species Formed via Oxygen or Water Dissociative Adsorption onto a Gallium Phosphide Surface

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Interactions of O2 or H2O with a GaP(111) surface were investigated over wide ranges of pressure and temperature using near-ambient pressure X-ray photoelectron spectroscopy. We demonstrated the formation of several oxygen-containing species from the dissociative adsorption of gas-phase molecules onto GaP(111). Chemical evolutions were determined at the gas/semiconductor interfaces based on changes in the high-resolution photoelectron spectra, which allowed us to identify the final products formed either directly or through intermediate species. We then used the Ga 2p3/2 spectra to create maps of the relative abundances of surface oxides and hydroxyl groups present under various experimental conditions. In the case of the O2/GaP(111) interface, we detected Ga–P bonds, and various oxygen-containing species, i.e., Ga2O, Ga2O3, and GaPOm. In the case of the H2O/GaP(111) interface, in addition to the detection of Ga–P bonds, species were formed with a different extent of oxidation and hydroxylation, On–Ga–(OH)3−n, via a Ga2O-like intermediate species. In both cases, the co-existence of multiple species represented as (GaPO)A or (GaPOH)B, was displayed under specific conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. unpublished data.

References

  1. Gratzel M (2001) Nature 414:338–344

    Article  CAS  Google Scholar 

  2. Young JL, Doescher H, Steiner MA, Palay E, George SM, Deutsch TG, Turner JA (2015) MRS-Spring Meeting, San Francisco

  3. Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Science 344:1005–1009

    Article  CAS  Google Scholar 

  4. Kaiser B, Fertig D, Ziegler J, Klett J, Hoch S, Jaegermann W (2012) ChemPhysChem 13:3053–3060

    Article  CAS  Google Scholar 

  5. Salmeron M, Schlogl R (2008) Surf Sci Rep 63:169–199

    Article  CAS  Google Scholar 

  6. Zhang X, Ptasinska S (2015) Phys Chem Chem Phys 17:3909–3918

    Article  CAS  Google Scholar 

  7. Arrigo R, Havecker M, Schuster ME, Ranjan C, Stotz E, Knop-Gericke A, Schlogl R (2013) Angew Chem Int Ed 52:11660–11664

    Article  CAS  Google Scholar 

  8. Takagi Y, Wang H, Uemura Y, Ikenaga E, Sekizawa O, Uruga T, Ohashi H, Senba Y, Yumoto H, Yamazaki H, Goto S, Tada M, Iwasawa Y, Yokoyama T (2014) Appl Phys Lett 105:131602–131606

    Article  Google Scholar 

  9. El Gabaly F, McDaniel AH, Grass M, Chueh WC, Bluhm H, Liu Z, McCarty KF (2012) Chem Commun 48:8338–8340

    Article  Google Scholar 

  10. Casalongue HS, Kaya S, Viswanathan V, Miller DJ, Friebel D, Hansen HA, Norskov JK, Nilsson A, Ogasawara H (2013) Nat Commun 4:2817

    Article  Google Scholar 

  11. Casalongue HGS, Ng ML, Kaya S, Friebel D, Ogasawara H, Nilsson A (2014) Angew Chem Int Ed 53:7169–7172

    Article  Google Scholar 

  12. Zhang CJ, Yu Y, Grass ME, Dejoie C, Ding WC, Gaskell K, Jabeen N, Hong YP, Shayorskiy A, Bluhrn H, Li WX, Jackson GS, Hussain Z, Liu Z, Eichhorn BW (2013) J Am Chem Soc 135:11572–11579

    Article  CAS  Google Scholar 

  13. Zhang CJ, Grass ME, Yu Y, Gaskell KJ, DeCaluwe SC, Chang R, Jackson GS, Hussain Z, Bluhm H, Eichhorn BW, Liu Z (2012) ACS Catal 2:2297–2304

    Article  CAS  Google Scholar 

  14. Opitz AK, Nenning A, Rameshan C, Rameshan R, Blume R, Havecker M, Knop-Gericke A, Rupprechter G, Fleig J, Klotzer B (2015) Angew Chem Int Ed 54:2628–2632

    Article  CAS  Google Scholar 

  15. Feng ZLA, El Gabaly F, Ye XF, Shen ZX, Chueh WC (2014) Nat Commun 5:4374

    CAS  Google Scholar 

  16. Zhang X, Ptasinska S (2014) J Phys Chem C 118:4259–4266

    Article  CAS  Google Scholar 

  17. Zhang X, Ptasinska S (2015) J Phys Chem C 119:262–270

    Article  CAS  Google Scholar 

  18. Zhang X, Lamere E, Liu X, Furdyna JK, Ptasinska S (2014) Appl Phys Lett 104:181602–181606

    Article  Google Scholar 

  19. Xu G, Hu WY, Puga MW, Tong SY, Yeh JL, Wang SR, Lee BW (1985) Phys Rev B 32:8473–8476

    Article  CAS  Google Scholar 

  20. Iwasaki H, Mizokawa Y, Nishitani R, Nakamura S (1979) Surf Sci 86:811–818

    Article  CAS  Google Scholar 

  21. Priyantha W, Radhakrishnan G, Droopad R, Passlack M (2011) J Cryst Growth 323:103–106

    Article  CAS  Google Scholar 

  22. Epp JM, Dillard JG (1990) Chem Mater 2:449–454

    Article  CAS  Google Scholar 

  23. Epp JM, Dillard JG (1989) Chem Mater 1:325–330

    Article  CAS  Google Scholar 

  24. McDonnell S, Dong H, Hawkins JM, Brennan B, Milojevic M, Aguirre-Tostado FS, Zhernokletov DM, Hinkle CL, Kim J, Wallace RM (2012) Appl Phys Lett 100:141606–141609

    Article  Google Scholar 

  25. Brennan B, Zhernokletov DM, Dong H, Hinkle CL, Kim J, Wallace RM (2012) Appl Phys Lett 100:151603–151606

    Article  Google Scholar 

  26. Hinkle CL, Vogel EM, Ye PD, Wallace RM (2011) Curr Opin Solid State Mater Sci 15:188–207

    Article  CAS  Google Scholar 

  27. May MM, Supplie O, Hohn C, Van De Krol R, Lewerenz HJ, Hannappel T (2013) New J Phys 15:103003

    Article  Google Scholar 

  28. May MM, Lewerenz HJ, Hannappel T (2014) J Phys Chem C 118:19032–19041

    Article  CAS  Google Scholar 

  29. Ketteler G, Ogletree DF, Bluhm H, Liu HJ, Hebenstreit ELD, Salmeron M (2005) J Am Chem Soc 127:18269–18273

    Article  CAS  Google Scholar 

  30. Wood BC, Ogitsu T, Schwegler E (2012) J Chem Phys 136:064705–064715

    Article  Google Scholar 

  31. Wood BC, Schwegler E, Choi WI, Ogitsu T (2013) J Am Chem Soc 135:15774–15783

    Article  CAS  Google Scholar 

  32. Wood BC, Schwegler E, Choi WI, Ogitsu T (2014) J Phys Chem C 118:1062–1070

    Article  CAS  Google Scholar 

  33. Zhang X, Lamere E, Liu X, Furdyna JK, Ptasinska S (2014) Chem Phys Lett 605–606:51–55

    Google Scholar 

  34. Jeon S, Kim H, Goddard WA, Atwater HA (2012) J Phys Chem C 116:17604

    Article  CAS  Google Scholar 

  35. Munoz-Garcia AB, Carter EA (2012) J Am Chem Soc 134:13600–13603

    Article  CAS  Google Scholar 

  36. Khaselev O, Turner JA (1998) J Electrochem Soc 145:3335–3339

    Article  CAS  Google Scholar 

  37. Mazin BA, Sank D, McHugh S, Lucero EA, Merrill A, Gao JS, Pappas D, Moore D, Zmuidzinas J (2010) Appl Phys Lett 96:102504

    Article  Google Scholar 

  38. Chen G, Visbeck SB, Law DC, Hicks RF (2002) J Appl Phys 91:9362–9367

    Article  CAS  Google Scholar 

  39. Su CY, Lindau I, Chye PW, Skeath PR, Spicer WE (1982) Phys Rev B 25:4045–4068

    Article  CAS  Google Scholar 

  40. Hollinger G, Bergignat E, Joseph J, Robach Y (1985) J. Vac Sci Technol 3:2082–2088

    Article  CAS  Google Scholar 

  41. Brennan B, Dong H, Zhernokletov D, Kim J, Wallace RM (2011) Appl Phys Exp 4:125701

    Article  Google Scholar 

  42. Tourtin F, Armand P, Ibanez A, Tourillon G, Philippot E (1998) Thin Solid Films 322:85–92

    Article  CAS  Google Scholar 

  43. Adelmann C, Cuypers D, Tallarida M, Rodriguez LNJ, De Clercq A, Friedrich D, Conard T, Delabie A, Seo JW, Locquet JP, De Gendt S, Schmeisser D, Van Elshocht S, Caymax M (2013) Chem Mater 25:1078–1091

    Article  CAS  Google Scholar 

  44. Schwartz GP, Gualtieri GJ, Griffiths JE, Thurmond CD, Schwartz B (1980) J Electrochem Soc 127:2488–2499

    Article  CAS  Google Scholar 

  45. Schwartz GP (1983) Thin Solid Films 103:3–16

    Article  CAS  Google Scholar 

  46. Andersson K, Ketteler G, Bluhm H, Yamamoto S, Ogasawara H, Pettersson LGM, Salmeron M, Nilsson A (2008) J Am Chem Soc 130:2793–2797

    Article  CAS  Google Scholar 

  47. Andersson K, Ketteler G, Bluhm H, Yamamoto S, Ogasawara H, Pettersson LGM, Salmeron M, Nilsson A (2007) J Phys Chem C 111:14493–14499

    Article  CAS  Google Scholar 

  48. Powell CJ, Jablonski A (2010) NIST standard reference database 71: NIST electron inelastic mean free path database: version 1.2. National Institute of Standards and Technology: Gaithersburg, Maryland, USA

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FC02-04ER15533. This is contribution number NDRL 5069 from the Notre Dame Radiation Laboratory. The authors would like to thank James Kapaldo for creating the two maps using the MATLAB software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Ptasinska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ptasinska, S. Heterogeneous Oxygen-Containing Species Formed via Oxygen or Water Dissociative Adsorption onto a Gallium Phosphide Surface. Top Catal 59, 564–573 (2016). https://doi.org/10.1007/s11244-015-0526-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0526-2

Keywords

Navigation