Skip to main content
Log in

Structure of vacant electronic states of an oxidized germanium surface upon deposition of perylene tetracarboxylic dianhydride films

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper presents the results of the investigation of the interface potential barrier and vacant electronic states in the energy range of 5 to 20 eV above the Fermi level (E F) in the deposition of perylene tetracarboxylic dianhydride (PTCDA) films on the oxidized germanium surface ((GeO2)Ge). The concentration of oxide on the (GeO2)Ge surface was determined by X-ray photoelectron spectroscopy. In the experiments, we used the recording of the reflection of a test low-energy electron beam from the surface, implemented in the mode of total current spectroscopy. The theoretical analysis involves the calculation of the energy and spatial distribution of the orbitals of PTCDA molecules by the density functional theory (DFT) using B3LYP functional with the basis 6-31G(d), followed by the scaling of the calculated values of the orbital energy according to the procedure well-proven in the studies of small organic conjugated molecules. The pattern of changes in the fine structure of the total current spectra with increasing thickness of the PTCDA coating on the (GeO2)Ge surface to 6 nm was studied. At energies below 9 eV above E F, there is a maximum of the density of unoccupied electron states in the PTCDA film, formed mainly by π* molecular orbitals. The higher density maxima of unoccupied states are of σ* nature. The formation of the interface potential barrier in the deposition of PTCDA at the (GeO2)Ge surface is accompanied by an increase in the work function of the surface, E vacE F, from 4.6 ± 0.1 to 4.9 ± 0.1 eV. This occurs when the PTCDA coating thickness increases to 3 nm, and upon further deposition of PTCDA, the work function of the surface does not change, which corresponds to the model of formation of a limited polarization layer in the deposited organic film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Forrest, Chem. Rev. 97, 1793 (1997).

    Article  Google Scholar 

  2. A. N. Aleshin, I. P. Shcherbakov, and I. N. Trapeznikova, Phys. Solid State 56 (2), 405 (2014).

    Article  ADS  Google Scholar 

  3. M. Gruenewald, L. K. Schirra, P. Winget, M. Kozlik, P. F. Ndione, A. K. Sigdel, J. J. Berry, R. Forker, J.-L. Brédas, T. Fritz, and O. L. A. Monti, J. Phys. Chem. C 119, 4865 (2015).

    Article  Google Scholar 

  4. V. A. Zakrevskii and N. T. Sudar’, Phys. Solid State 55 (7), 1395 (2013).

    Article  ADS  Google Scholar 

  5. A. A. Ahmad Zebari, M. Kolmer, and J. S. Prauzner-Bechcicki, Appl. Surf. Sci. 332, 403 (2015).

    Article  ADS  Google Scholar 

  6. A. S. Komolov, Tech. Phys. 49 (5), 630 (2004).

    Article  Google Scholar 

  7. Q. Cai, B. Xu, L. Ye, T. Tang, S. Huang, X. Du, X. Bian, J. Zhang, Z. Di, Q. Jin, and J. Zhao, Appl. Surf. Sci. 316, 46 (2014).

    Article  ADS  Google Scholar 

  8. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, App. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  9. Y. Hirose, C. I. Wu, V. Aristov, P. Soukiassian, and A. Kahn, Appl. Surf. Sci. 113/114, 291 (1997).

    Article  ADS  Google Scholar 

  10. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 5 (2000).

    Article  Google Scholar 

  11. M. Marks, S. Sachs, C. H. Schwalb, A. Schöll, and U. Höfer, J. Chem. Phys. 139, 124701 (2013).

    Article  ADS  Google Scholar 

  12. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, and A. D. Ovsyannikov, Phys. Solid State 57 (7), 1472 (2015).

    Article  ADS  Google Scholar 

  13. A. S. Komolov, P. J. Møller, J. Mortensen, S. A. Komolov, and E. F. Lazneva, Appl. Surf. Sci. 253, 7376 (2007).

    Article  ADS  Google Scholar 

  14. T. Kaufman-Osborn, K. Kiantaj, C.-P. Chang, and A. C. Kummel, Surf. Sci. 630, 254 (2014).

    Article  ADS  Google Scholar 

  15. D. Bodlaki, H. Yamamoto, D. H. Waldeck, and E. Borguet, Surf. Sci. 543, 63 (2003).

    Article  ADS  Google Scholar 

  16. A. S. Komolov and P. J. Møller, Appl. Surf. Sci. 212–213, 497 (2003).

    Article  Google Scholar 

  17. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117 (24), 12633 (2013).

    Article  Google Scholar 

  18. A. S. Komolov and P. J. Møller, Synth. Met. 128, 205 (2002).

    Article  Google Scholar 

  19. S. A. Pshenichnyuk, A. V. Kukhto, I. N. Kukhto, and A. S. Komolov, Tech. Phys. 56 (6), 754 (2011).

    Article  Google Scholar 

  20. I. Bartos, Prog. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  21. S. A. Pshenichnyuk and A. S. Komolov, J. Phys. Chem. A 116 (1), 761 (2012).

    Article  Google Scholar 

  22. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, A. Marenich, F. Clemente, L. Zou, J. Zheng, and J. Sonnenberg, Gaussian 09, Revision D.01 (Gaussian, Wallingford, Connecticut, United States, 2009).

    Google Scholar 

  24. P. D. Burrow and A. Modelli, SAR QSAR Environ. Res. 24, 647 (2013).

    Article  Google Scholar 

  25. A. M. Scheer and P. D. Burrow, J. Phys. Chem. B 110, 17751 (2006).

    Article  Google Scholar 

  26. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, E. P. Nafikova, and A. Modelli, Rapid Commun. Mass Spectrosc. 29, 910 (2015).

    Google Scholar 

  27. S. A. Pshenichnyuk, A. Modelli, E. F. Lazneva, and A. S. Komolov, J. Phys. Chem. A 118, 6810 (2014).

    Article  Google Scholar 

  28. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy, Ed. J. Chastain, 2nd ed. (Perkin-Elmer, Eden Prairie, Minnesota, United States, 1992).

  29. C. J. Powell, Surf. Sci. 44, 29 (1974).

    Article  ADS  Google Scholar 

  30. M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).

    Article  Google Scholar 

  31. A. S. Komolov, S. A. Komolov, E. F. Lazneva, A. A. Gavrikov, and A. M. Turiev, Surf. Sci. 605, 1449 (2011).

    Article  ADS  Google Scholar 

  32. A. S. Komolov, E. F. Lazneva, Y. G. Aliaev, S. A. Akhremchik, F. S. Kamounah, J. Mortenson, and K. Schaumburg, J. Mol. Struct. 744/747, 145 (2005).

    Article  ADS  Google Scholar 

  33. L. Grzadziel, M. Krzywiecki, H. Peisert, T. Chassé, and J. Szuber, Org. Electron. 13 (10), 1873 (2012).

    Article  Google Scholar 

  34. S. Godlewski and M. Szymonski, Int. J. Mol. Sci. 14 (2), 2946 (2013).

    Article  Google Scholar 

  35. I. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Additional information

Original Russian Text © A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, Yu.A. Panina, A.V. Baramygin, G.D. Zashikhin, S.A. Pshenichnyuk, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 2, pp. 367–371.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Structure of vacant electronic states of an oxidized germanium surface upon deposition of perylene tetracarboxylic dianhydride films. Phys. Solid State 58, 377–381 (2016). https://doi.org/10.1134/S106378341602013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341602013X

Keywords

Navigation