Skip to main content

Advertisement

Log in

Functionalization and Characterization of Carbon Nanohorns (CNHs) for Hydrotreating of Gas Oils

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Improvement in the functionality of carbon nanohorns (CNHs), a novel carbon nanomaterial, for hydrotreating applications is investigated in the present work. The current work was carried out by using pristine CNHs synthesized by the submerged arc in liquid nitrogen and their corresponding physicochemical properties were investigated. The surface area, pore diameter and pore volume of the pristine CNHs are 129 m2/g, 23.1 nm, and 0.64 cm3/g respectively. Functionalizing the CNHs with 30 wt% HNO3 under reflux for 15 min to 4 h at 110 °C modified the physical and chemical properties. 30 min functionalization duration was found to be the best and a co-impregnation method was used to load Ni (2.5 wt%) and Mo (13 wt%) onto the support. Techniques used to thoroughly characterize the properties of pristine CNHs, functionalized CNHs and NiMo/CNHs catalyst include: Brauner-Emmett-Teller (BET), Fourier Transform Infrared (FTIR) and Raman Spectroscopy. Type II isotherm and mesoporous pore diameter was observed for CNHs in it’s pristine, functionalized or catalyst form. An increase in surface area of over 500 m2/g was also attained under optimum functionalized conditions. The pore volume of acid treated CNH samples for hydrotreating increased by ~10 % as compared to the pore volume of the pristine CNHs. FTIR results revealed the presence of carboxylic acid (–COOH) groups on the functionalized CNHs and I D/I G ratios from Raman spectroscopy was used to assess the increase in defects (nanowindow) on functionalized CNHs. The enhanced properties of functionalized and catalyst-supported CNHs offers prospect for hydrotreating gas oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grange P, Vanhaeren X (1997) Catal Today 36:375–391

    Article  CAS  Google Scholar 

  2. Jarullah A, Mujtaba I, Wood A (2011) Energy Fuels 25:773–781

    Article  CAS  Google Scholar 

  3. Valavarasu G, Bhaskar M, Balaraman K (2003) Petrol Sci Technol 21:1185–1205

    Article  CAS  Google Scholar 

  4. Leliveld R, Eijsbouts S (2008) Catal Today 130:183–189

    Article  CAS  Google Scholar 

  5. Satterfield C, Modell M, Wilkens J (1980) Ind Eng Chem Proc Des Dev 19:154–160

    Article  CAS  Google Scholar 

  6. Babich I, Moulijn J (2003) Fuel 82:607–631

    Article  CAS  Google Scholar 

  7. Stanislaus A, Marafi A, Rana M (2010) Catal Today 153:1–68

    Article  CAS  Google Scholar 

  8. Furimsky E (1998) Appl Catal A: Gen 171:177–206

    Article  CAS  Google Scholar 

  9. Ferdous D, Dalai A, Adjaye J (2006) Fuel 85:1286–1297

    Article  CAS  Google Scholar 

  10. Carrier X, Lambert J, Che M (1997) J Am Chem Soc 119:10137–10146

    Article  CAS  Google Scholar 

  11. Luck F (1991) Bull Soc Chim Belg 100:781–800

    Article  CAS  Google Scholar 

  12. Satterfield C (1991) Heterogenous catalysis in industrial practice, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  13. Rodriquez-Reinoso F (1998) Carbon 36:159–175

    Article  Google Scholar 

  14. Farag H, Whitehurst D, Mochida I (1998) Ind Eng Chem Res 37:3533–3539

    Article  CAS  Google Scholar 

  15. Farag H, Mochida I, Sakanishi K (2000) Appl Catal A 147:194–195

    Google Scholar 

  16. Gattia D, Antisari M, Giorgi L, Marazzi R, Piscopiello E, Montone A, Bellitto S, Liccoccia S, Traversa E (2009) J Power Sour 194:243–251

    Article  Google Scholar 

  17. Sano Y, Choi K, Korai Y, Mochida I (2004) Appl Catal B: Environ 49:219–225

    Article  CAS  Google Scholar 

  18. Hynaux A, Sayag C, Suppan S, Trawczynski J, Lewandowski M, Szymanska-Kolasa A, Djega-Mariadassou G (2007) Appl Catal B: Environ 72:62–70

    Article  CAS  Google Scholar 

  19. Hussain M, Ihm S (2009) Ind Eng Chem Res 48:698–707

    Article  CAS  Google Scholar 

  20. Sigurdson S, Sundaramurthy V, Dalai A, Adjaye J (2009) J Mol Catal A: Chem 306:23–32

    Article  CAS  Google Scholar 

  21. Iijimaa S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Chem Phys Lett 309:165–170

    Article  Google Scholar 

  22. Yamaguchi T, Bandow S, Iijima S (2004) Chem Phys Lett 389:181–185

    Article  CAS  Google Scholar 

  23. Wang J, Zhao Y, Niu J (2007) J Mat Chem 17:2251–2256

    Article  CAS  Google Scholar 

  24. Murata K, Kaneko K, Steele W, Kokai F, Takahashi K, Kasuya D, Hirahara K, Yudasaka M, Ijima S (2001) J Phys Chem B 105:10210–10216

    Article  CAS  Google Scholar 

  25. Wang H, Chhowalla M, Sano N, Jia S, Amaratunga G (2004) Nanotechnology 15:546–550

    Article  CAS  Google Scholar 

  26. Yudasaka M, Iijima S, Crespi V (2008) “Single-wall carbon nanohorns and nanocones” In Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes topics in applied physics, Vol 111. Springer, New York p 605–629

  27. Yuge R, Ichihashi T, Miyawaki J, Yoshitake T, Iijima S, Yudasaka M (2009) J Phys Chem C 113:2741–2744

    Article  CAS  Google Scholar 

  28. Krungleviciute V, Calbi M, Wagner J, Migone A, Yudasaka M, Iijima S (2008) J Phys Chem C 112:5742–5746

    Article  CAS  Google Scholar 

  29. Bekyarova E, Kaneko K, Kasuya D, Murata K, Yudasaka M, Iijima S (2002) Langmuir 18:4138–4141

    Article  CAS  Google Scholar 

  30. Utsumi S, Miyawaki J, Tanaka H, Hattori Y, Itoi T, Ichikuni N, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2005) J Phys Chem B 109:14319–14324

    Article  CAS  Google Scholar 

  31. Itoh T, Urita K, Bekyarova E, Arai M, Yudasak M, Iijima S, Ohba T, Kaneko K, Kanoh H (2008) J Colloid Interface Sci 322:209–214

    Article  CAS  Google Scholar 

  32. Lordi V, Ma S, Yao N (1999) Surf Sci 421:L150–L155

    Article  CAS  Google Scholar 

  33. Ajima K, Yudasaka M, Suenaga K, Kasuya D, Azami T, Iijima S (2004) Adv Mat 16:397–401

    Article  CAS  Google Scholar 

  34. Bekyarova E, Kaneko K, Yudasaka M, Kasuya D, Iijima S, Huidobro A, Rodriguez-Reinoso F (2003) J Phys Chem B 107:4479–4484

    Article  CAS  Google Scholar 

  35. Fan J, Yudasaka M, Miyawaki J, Ajima K, Murata K, Iijima S (2006) J Phys Chem B 110:1587–1591

    Article  CAS  Google Scholar 

  36. Pagona G, Tagmatarchis N, Fan J, Yudasaka M, Iijima S (2006) Chem Mater 18:3918–3920

    Article  CAS  Google Scholar 

  37. Hou P, Liu C, Cheng H (2008) Carbon 46:2003–2025

    Article  CAS  Google Scholar 

  38. Pagona G, Mountrichas G, Rotas G, Karousis N, Pipas S, Tagmatarchis N (2009) Int J Nanotechnology 6:176–195

    Article  CAS  Google Scholar 

  39. Yoshida S, Sano M (2006) Chem Phys Lett 433:97–100

    Article  CAS  Google Scholar 

  40. Yang C, Kasuya D, Yudasaka M, Iijima S, Kaneko K (2004) J Phys Chem B 108:17775–17782

    Article  CAS  Google Scholar 

  41. Yang C, Noguchi H, Murata K, Yudasaka M, Hashimoto A, Iijima S, Kaneko K (2005) Adv Mater 17:866–870

    Article  CAS  Google Scholar 

  42. Shinke K, Ando K, Koyama T, Takai T, Nakaji S, Ogino T (2010) Coll Surf B: Biointer 77:18–21

    Article  CAS  Google Scholar 

  43. Comisso N, Berlouis L, Morrow J, Pagura C (2010) Int J Hydrogen Energy 35:9070–9081

    Article  CAS  Google Scholar 

  44. Urita K, Seki S, Utsumi S, Noguchi D, Kanoh H, Tanaka H, Hattori Y, Ochiai Y, Aoki N, Yudasaka M, Iijima S, Kaneko K (2006) Nano Lett 6:1325–1328

    Article  CAS  Google Scholar 

  45. Nisha J, Yudasaka M, Bandow S, Kokai F, Takahashi K, Iijima S (2000) Chem Phys Lett 328:381–386

    Article  Google Scholar 

  46. Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S (2005) Mol Pharmaceutics 2:475–480

    Article  CAS  Google Scholar 

  47. Brandao L, Passeira C (2011) J Mater Sci 46:7198–7205

    Article  CAS  Google Scholar 

  48. Liu X, Li H, Wang F, Zhu S, Wang Y, Xu G (2010) Biosens Bioelec 25:2194–2199

    Article  CAS  Google Scholar 

  49. Murata K, Miyawaki J, Yudasaka M, Iijima S, Kaneko K (2005) Carbon 43:2817–2833

    Article  Google Scholar 

  50. Yuge R, Ichihashi T, Shimakawa Y, Kubo Y, Yudasaka M, Iijima S (2004) Adv Mater 16:1420–1423

    Article  CAS  Google Scholar 

  51. Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y, Kasuya D, Takahashi F, Kokai F, Yudasaka M, Iijima S (2002) Phys B 323:124–126

    Article  CAS  Google Scholar 

  52. Chithrani B, Ghazani A, Chan W (2006) Nano Lett 6:662–668

    Article  CAS  Google Scholar 

  53. Fan X, Tan J, Zhang G, Zhang F (2007) Nanotechnology 18:195103–195109

    Article  Google Scholar 

  54. Botchwey C, Dalai A, Adjaye J (2004) Ind Eng Chem Res 43:5854–5861

    Article  CAS  Google Scholar 

  55. Jorio A (2012) Nanotechnology 2012:234216–234232

    Google Scholar 

  56. Boehm H, Diehl E, Heck W, Sappok R (1964) Angew Chem Internat Edit 3:669–677

    Article  Google Scholar 

  57. Boehm H (2002) Carbon 40:145–149

    Article  CAS  Google Scholar 

  58. Yuge R, Yudasaka M, Miyawaki J, Kubo Y, Isobe H, Yorimitsu H, Nakamura E, Iijima S (2007) J Phys Chem C 111:7348–7351

    Article  CAS  Google Scholar 

  59. Azami T, Kasuya D, Yuge R, Yudasaka M, Iijima S, Yoshitake T, Kubo Y (2008) J Phys Chem C 112:1330–1334

    Article  CAS  Google Scholar 

  60. Battiston S, Bolzan M, Fiameni S, Gerbasi R, Meneghetti M, Miorin E, Mortalo C, Pagura C (2009) Carbon 47:1321–1326

    Article  CAS  Google Scholar 

  61. Zhang M, Yudasaka M, Iijima S (2004) J Phys Chem B 108:149–153

    Article  CAS  Google Scholar 

  62. Anderson O, Prasad B, Sato H, Enoki T, Hishiyama Y, Kaburagi Y (1998) Phys Rev B 58:16387–16395

    Article  Google Scholar 

  63. Badoga S, Mouli C, Soni K, Dalai A, Adjaye J (2012) Appl Catal B: Environ 125:67–84

    Article  CAS  Google Scholar 

  64. Teng J, Tang T (2008) J Zhejiang Univ Sci A 9:720–726

    Article  CAS  Google Scholar 

  65. Fanning P, Vannice M (1993) Carbon 31:721–730

    Article  CAS  Google Scholar 

  66. Xiao B, Thomas K (2004) Langmuir 20:4566–4578

    Article  CAS  Google Scholar 

  67. Zeuthen P, Knudsen K, Whitehurst D (2001) Catal Today 65:307–314

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors hereby acknowledge financial assistance from National Science and Engineering Research Council (NSERC) and SYNCRUDE Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Dalai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aryee, E., Dalai, A.K. & Adjaye, J. Functionalization and Characterization of Carbon Nanohorns (CNHs) for Hydrotreating of Gas Oils. Top Catal 57, 796–805 (2014). https://doi.org/10.1007/s11244-013-0236-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0236-6

Keywords

Navigation