Skip to main content
Log in

Preparation and Characterization of Fe–Co/SiO2 Nanocatalysts for Gasoline Range Hydrocarbons Production from Syngas

  • Published:
Catalysis Letters Aims and scope Submit manuscript

A Correction to this article was published on 25 February 2019

This article has been updated

Abstract

Fischer–Tropsch Synthesis (FTS) was studied to produce C5–C12 hydrocarbons (gasoline range hydrocarbons) from syngas by using iron-cobalt catalysts supported on nanosilica. The nanosilica was produced by a simple and cheap method from haulm rice. Catalysts and precursors were characterized by X-ray diffraction (XRD), temperature programmed desorption and reduction (TPD and TPR), scanning electron microcopy (SEM), energy dispersive X-ray spectrometer (EDX), transmission electron microcopy (TEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and N2 adsorption–desorption measurements. The effects of Co–Fe (based on support weight) wt%, Co/Fe molar ratios, calcination conditions and operational conditions on the catalytic performance were studied. It was found out that the catalyst containing Co–Fe/SiO2 = 11 wt% with Co/Fe = 3/1 had the best catalytic performance for production of C5–C12 hydrocarbons. The optimal operational conditions were H2/CO = 2/1 molar feed ratio, T = 290 °C, gas hourly space velocity (GHSV) = 1600 h−1 and 12 bar total pressure. Additionally, the optimal catalyst was stable during 250 h without significant degradation in catalytic activity and its catalytic performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 25 February 2019

    The original version of this article unfortunately contained mistakes in the Supplementary information.

  • 25 February 2019

    The original version of this article unfortunately contained mistakes in the Supplementary information.

References

  1. Davis B (2001) Fuel Process Technol 71:157

    Article  CAS  Google Scholar 

  2. Kovacevic M, Mojet BL, van Ommen JG, Lefferts L (2016) Catal Lett 146:770

    Article  CAS  Google Scholar 

  3. Shi B, Davis BH (2005) Catal Today 106:129

    Article  CAS  Google Scholar 

  4. Colley S, Copperthwaite RG, Hutchings GJ, van der Riet M (1988) Ind Eng Chem Res 27:1339

    Article  CAS  Google Scholar 

  5. Almeida LC, Sanz O, Merino D, Arzamendi G, Gand LM, Montes M (2013) Catal Today 215:103

    Article  CAS  Google Scholar 

  6. Ishihara T, Eguchi K, Arai H (1987) Appl Catal A 30:225

    Article  CAS  Google Scholar 

  7. Barrault J, Renard C (1985) Appl Catal A 14:133

    Article  CAS  Google Scholar 

  8. Barrault J, Renard C (1986) Chem Abstr 105:155071

    Google Scholar 

  9. Villeger P, Leclercq GR Maurel (1980) Chem Abstr 93:170786

    Google Scholar 

  10. Duvenhage DJ, Cooville NJ (1997) Appl Catal A 153:43

    Article  CAS  Google Scholar 

  11. Cabet C, Roger AC, Kiennemann A, Akamp SL, Pourroy G (1998) J Catal 173:64

    Article  CAS  Google Scholar 

  12. Wang Y, Noguchi M, Takahashi Y, Ohtsuka Y (2001) Catal Today 68:3

    Article  CAS  Google Scholar 

  13. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) J Catal 206:230

    Article  CAS  Google Scholar 

  14. Cai Q, Li JL (2008) Catal Commun 9:2003

    Article  CAS  Google Scholar 

  15. Liu C, Hong J, Zhang Y, Zhao Y, Wang L, Wei L, Chen S, Wang G, Li J (2016) Fuel 180:777

    Article  CAS  Google Scholar 

  16. Feyzi M, Hassankhani A (2011) J Nat Gas Chem 20:677

    Article  CAS  Google Scholar 

  17. Todic B, Nowicki L, Nikacevic N, Bukur DB (2001) Catal Today 261:28

    Article  Google Scholar 

  18. Martínez A, López C, Márquez F, Díaz I (2003) J Catal 220:486

    Article  Google Scholar 

  19. Kugler EL, Tauster SJ (1980) US Patent 206:135

    Google Scholar 

  20. Tauster SJ, Fung SC, Garden R (1978) J Am Chem Soc 100:170

    Article  CAS  Google Scholar 

  21. Varma RL, Dan-Chu L, Mathews JF, Bakhshi NN (1985) Can J Chem Eng 63:72

    Article  CAS  Google Scholar 

  22. Ghosh TB, Nandi KC, Acharya HN, Mukherjee D (1991) Mater Lett 12:175

    Article  CAS  Google Scholar 

  23. Conradt R, Pimkhaokham P, Leela-Adisorn U (1992) J Non-Cryst Solids 145:75

    Article  CAS  Google Scholar 

  24. Real C, Alcala MD, Criado JM (1996) J Am Ceram Soc 79:2012

    Article  CAS  Google Scholar 

  25. Pei Y, Ding Y, Zhu H, Zang J, Song X, Dong W, Wang T, Lu Y (2014) Catal Lett 144:1433

    Article  CAS  Google Scholar 

  26. Sun L, Gong K (2001) Ind Eng Chem Res 40:5861

    Article  CAS  Google Scholar 

  27. Khodaei MM, Feyzi M, Shahmoradi J, Joshaghani M (2014) J Fuel Chem Technol 42(2):212

    Article  CAS  Google Scholar 

  28. Mauldin CH, Varnado DE (2001) Stud Surf Sci Catal 136:417

    Article  CAS  Google Scholar 

  29. Dry ME, Anderson JR, Boudart M (1981) Sci Technol 1:159

    CAS  Google Scholar 

  30. Niemantsverdriet JW, vander Kraan AM, Van Dijk WL, Van Der Baan HS (1980) J Phys Chem 84:3363

    Article  CAS  Google Scholar 

  31. Loktev SM, Makarenkova LI, Slivinskii EV, Entin SD (1973) Kinet Catal 14:273

    Google Scholar 

  32. Raymond JP, Meriaudeau P, Teichner SJ (1982) J Catal 75:39

    Article  Google Scholar 

  33. Gonzales-Cortes SL, Rodulfo-Baechler MA, Orozco J (2003) REV Mex Fis 49(S3):204

    Google Scholar 

  34. Xiong HF, Zhang YH, Liew KY, Li JL (2005) J Mol Catal A 231:145

    Article  CAS  Google Scholar 

  35. Zhang Y, Nagamori S, Yamaguchi M, Rengakuji S, Tsubaki N (2008) Catal Commun 9:902

    Article  CAS  Google Scholar 

  36. Visconti CG (2014) Ind Eng Chem Res 53:1727

    Article  CAS  Google Scholar 

  37. Li CM, Fujimoto K (2015) Catal Sci Technol 5:4501

    Article  CAS  Google Scholar 

  38. Boon AQ, Van Looij F, Geus JW (1992) J Mol Catal 75:277

    Article  CAS  Google Scholar 

  39. Gottschalk FM, Coppethwaite RG, Van der Riet M, Hutchings GJ (1988) Appl Catal 38:103

    Article  CAS  Google Scholar 

  40. Behrens M, Kasatkin I, Kühl S, Weinberg G (2010) Chem Mater 22:386

    Article  CAS  Google Scholar 

  41. Tavasoli A, Trépanier M, Abbaslou RMM, Dalai AK, Abatzoglou N (2009) Fuel Process Technol 90:1486

    Article  CAS  Google Scholar 

  42. Feyzi M, Yaghobi N, Eslamimanesh V (2015) Mater Res Bull 72:143

    Article  CAS  Google Scholar 

  43. Borg Ø, Rønning M, Storsæter S, van Beek W, Holmen A (2007) Stud Surf Sci Catal 163:255

    Article  CAS  Google Scholar 

  44. Nakhaei Pour A, Kamali Shahri SM, Bozorgzadeh HR, Zamani Y, Tavasoli A, Ahmadi Marvast M (2008) Appl Catal A 348:201

    Article  CAS  Google Scholar 

  45. Li S, Li A, Krishnammorrthy S, Iglesia E (2001) Catal Lett 77:197

    Article  CAS  Google Scholar 

  46. Kuivila CS, Butt JB, Stair PC (1988) Appl Surf Sci 32:99

    Article  CAS  Google Scholar 

  47. Van der Riet M, Hutchings GJ, Copperthwaite RG (1986) J Chem Soc Chem Commun 986:798

    Article  Google Scholar 

  48. Van der Riet M, Hutchings GJ, Copperthwaite RG (1987) J Chem Soc Faraday Trans 83:2963

    Article  Google Scholar 

  49. Copperthwaite RG, Hutchings GJ, Van der Riet M (1987) Ind Eng Chem Res 26:869

    Article  CAS  Google Scholar 

  50. Gonza´lez-Corte´s SL, Rodolfo-Baechler SMA, Oliverio A, Orozco J, Fontal B, Mora AJ, Delgado G (2002) React Kinet Catal Lett 75:3

    Article  Google Scholar 

  51. Jam S, Ghalbi Ahangary M, Tavasoli A, Sadaghiani K, Nakhei Pour A (2006) React Kinet Catal Lett 89:71

    Article  CAS  Google Scholar 

  52. Ciesla U, Schacht S, Stucky GD, Unger KK, Schüth F (1996) Angew Chem Int Ed Engl 35:541

    Article  CAS  Google Scholar 

  53. Zhang Y, Ma L, Tu J, Wang T, Li X (2015) Appl Catal A 499:139

    Article  CAS  Google Scholar 

  54. Madon RJ, Taylor WF (1979) Adv Chem 178:93

    Article  Google Scholar 

  55. Matsumoto DK, Satterfield CN (1989) Energy Fuels 3:249

    Article  Google Scholar 

  56. Barrault J, Forguyc C, Perrichon V (1983) Appl Catal A 5:119

    Article  CAS  Google Scholar 

  57. Yao Y, Liu X, Hildebrandt D, Glasser D (2012) Appl Catal A 433:58

    Article  Google Scholar 

  58. Schulz H, van Steen E, Claeys M (1994) Stud Surf Sci Catal 81:455

    Article  CAS  Google Scholar 

  59. Schulz H, Claeys M (1999) Appl Catal A 186:71

    Article  CAS  Google Scholar 

  60. Donnelly TJ, Satterfield CN (1989) Appl Catal A 52:93

    Article  CAS  Google Scholar 

  61. Masuku CM, Lu X, Hildebrandt D, Glasser D (2015) Fuel Process Technol 1:13054

    Google Scholar 

  62. Van der Laan GP (1999) Ind Eng Chem Res 38:1277

    Article  Google Scholar 

  63. Wojciechowski BW (1988) Catal Rev Sci Eng 30:629

    Article  CAS  Google Scholar 

  64. Zhang Y, Ma L, Wang T, Li X (2016) Fuel 177:197

    Article  CAS  Google Scholar 

  65. Komaya T, Bell AT (1994) J Catal 146:237

    Article  CAS  Google Scholar 

  66. Gribval-Constant A, Khodakov AY, Bechara R, Zholobenko VL (2002) Stud Surf Sci Catal 144:609

    Article  Google Scholar 

  67. Duvenhage DJ, Coville NJ (2005) Appl Catal A 289:231

    Article  CAS  Google Scholar 

  68. Muleja AA, Yao Y, Glasser D, Hildebrandt D (2016) Appl Catal A 517: 217

    Article  CAS  Google Scholar 

  69. Mirzaei AA, Habibpour R, Faizi M (2006) Appl Catal A 301: 272

    Article  CAS  Google Scholar 

  70. Anderson RB (1956) Catalysts for the Fischer–Tropsch synthesis vol 4, Van Nostrand Reinhold, New York

    Google Scholar 

  71. Dry ME (1982) J Mol Catal 17:133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Iran National Science Foundation for their help and support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Feyzi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1213 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyzi, M., Norouzi, L. & Zamani, Y. Preparation and Characterization of Fe–Co/SiO2 Nanocatalysts for Gasoline Range Hydrocarbons Production from Syngas. Catal Lett 146, 1922–1933 (2016). https://doi.org/10.1007/s10562-016-1839-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1839-x

Keywords

Navigation