Skip to main content
Log in

Electronic Structure Effects in Transition Metal Surface Chemistry

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Based on density functional theory and the Newns–Anderson model we present a detailed study of how an inclusion of higher order moments of the density of states can explain observed fine structure variations in oxygen bonding at metal surfaces. The many and sometimes closely coupled parameters that define the band-structure and its position are shown to force the very late transition metals to change shape abruptly. This induces variations in bond-strengths, which are not captured by the simple but successful d-band model. We demonstrate that these variations can be recaptured by a slight modification of the descriptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Langmuir I (1961) In: Suits CG (ed) The collected works of Irving Langmuir. Pergamon Press Ltd., New York

    Google Scholar 

  2. Newns DM (1969) Phys Rev 178:1123

    Article  CAS  Google Scholar 

  3. Lundqvist BI, Gunnarson O, Hjelmberg H, Nørskov JK (1979) Surf Sci 89:196

    Article  CAS  Google Scholar 

  4. Gajdos M, Eichler A, Hafner J (2004) J Phys Condens Matter 16:1141

    Article  CAS  Google Scholar 

  5. Hammer B (2006) Top Catal 37:3

    Article  CAS  Google Scholar 

  6. Roudgar A, Gross A (2003) J Electroanal Chem 548:121

    Article  CAS  Google Scholar 

  7. Greeley JP, Mavrikakis M (2004) Nat Mater 3:810

    Article  CAS  Google Scholar 

  8. Kitchin JR, Nørskov JK, Barteau MA, Chen JC (2004) J Chem Phys 120:10240

    Article  CAS  Google Scholar 

  9. Nikolla E, Schwank J, Linic S (2009) J Am Chem Soc 131:2747

    Article  CAS  Google Scholar 

  10. Markovic NM, Ross PN (2002) Surf Sci Rep 45:121

    Article  Google Scholar 

  11. Tripa CE, Zubkov TS, Yates JT, Mavrikakis M, Nørskov JK (1999) J Chem Phys 111:8651

    Article  CAS  Google Scholar 

  12. Mills G, Gordon MS, Metiu H (2003) J Chem Phys 118:4198

    Article  CAS  Google Scholar 

  13. Zhang JL, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) J Am Chem Soc 127:12480

    Article  CAS  Google Scholar 

  14. Kibler LA, El-Aziz AM, Hoyer R, Kolb DM (2005) Angew Chem Int Ed 44:2080

    Article  CAS  Google Scholar 

  15. Behm RJ (1998) Acta Phys Pol 93:259

    CAS  Google Scholar 

  16. Schnur S, Gross A (2010) Phys Rev B 81:033402

    Article  Google Scholar 

  17. Menning CA, Chen JGG (2009) J Chem Phys 130:174709

    Article  Google Scholar 

  18. Gross A (2008) J Comput Theor Nanosci 5:894

    CAS  Google Scholar 

  19. Liu ZP, Jenkins SJ, King DA (2004) J Am Chem Soc 126:10746

    Article  CAS  Google Scholar 

  20. Inderwildi OR, Jenkins SJ, King DA (2007) Surf Sci 601:L103

    Article  CAS  Google Scholar 

  21. Hammer B, Nørskov JK (2000) Adv Catal 45:71

    CAS  Google Scholar 

  22. Anderson PW (1961) Phys Rev 124:41

    Article  CAS  Google Scholar 

  23. Holloway S, Lundqvist BI, Nørskov JK (1984) In: Proceedings of the 8th conference on catalysis, Berlin, vol IV, p 85

  24. Hammer B, Nørskov JK (1995) Nature 376:2238

    Article  Google Scholar 

  25. Hammer B, Nørskov JK (1995) Surf Sci 343:211

    Article  CAS  Google Scholar 

  26. Bligaard T, Nørskov JK (2008) In: Nilsson A, Pettersson LGM, Nørskov JK (eds) Chapter 4 in “Chemical bonding at Surfaces and Interfaces”. Elsevier, Amsterdam

    Google Scholar 

  27. Hammer B, Nørskov JK (1997) In: Lambert RM, Pacchioni G (eds) Chemisorption and reactivity on supported clusters and thin films. Kluwer Academic, Dordrecht, pp 285–351

    Chapter  Google Scholar 

  28. Andersen OK, Jepsen O, Glötzel D (1985) Highlights in condensed matter theory, vol LXXXIX. Corso Soc. Italiana di Fisica, Bologna

    Google Scholar 

Download references

Acknowledgments

A. Vojvodic, J. K. Nørskov, and F. Abild-Pedersen gratefully acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Abild-Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vojvodic, A., Nørskov, J.K. & Abild-Pedersen, F. Electronic Structure Effects in Transition Metal Surface Chemistry. Top Catal 57, 25–32 (2014). https://doi.org/10.1007/s11244-013-0159-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0159-2

Keywords

Navigation