Skip to main content
Log in

Room Temperature Photocatalytic Oxidation of Carbon Monoxide Over Pd/TiO2–SiO2 Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The photocatalytic oxidation of carbon monoxide over TiO2–SiO2 and Pd/TiO2–SiO2 catalysts was studied. The catalyst samples were synthesized by using sol–gel technique coupled with hydrothermal treatment and all samples were hydrothermally treated before calcination in air. The catalyst samples were characterized by XRD, BET and DRIFTS techniques. The photocatalytic activity of the samples was determined by using circulated batch photoreactor coupled with in line gas transmission FTIR cell charged with 2,000 ppm carbon monoxide in air initially over 0.5 g of catalyst sample under 33 W (254 nm) irradiation power. XRD and BET results confirmed the presence of anatase phase and the decrease on the crystallite size of TiO2 with SiO2 addition which yield higher surface area and better dispersion of TiO2 over mesoporous SiO2. DRIFTS results indicated the presence of surface hydroxyls coordinated to Ti4+ and Si–O–Ti sites. All samples containing 10–90 % TiO2 over SiO2 exhibited significant photo oxidation activity at room temperature. The photocatalytic oxidation rate of carbon monoxide is favored by SiO2 addition due to high surface area, better dispersion of TiO2 particles and higher surface defects. The addition of PdO improves the photocatalytic activity significantly and the synergy between the TiO2 and PdO phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  2. Nosaka Y, Fox MA (1998) J Phys Chem 92:1893–1897

    Article  Google Scholar 

  3. Matthews RW (1988) J Catal 113:549–555

    Article  CAS  Google Scholar 

  4. Diebold U (2003) Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  5. Sclafani A, Herrman JM (1996) J Phys Chem 100(32):13655–13661

    Article  CAS  Google Scholar 

  6. Litter MI (1999) Appl Catal B 23:89–114

    Article  CAS  Google Scholar 

  7. Li W, Liu C, Zhou Y, Bai Y, Feng X, Yang ZH, Lu LH, Lu XH, Chan KY (2008) J Phys Chem C 112:20539–20545

    Article  CAS  Google Scholar 

  8. Jolivet JP (2000) Metal oxide chemistry and synthesis: from solution to solid state. Wiley, Chichester

    Google Scholar 

  9. Wang W, Gu B, Liang L, Hamilton WA, Wesolowski DJ (2004) J Phys Chem B 108:14789–14792

    Article  CAS  Google Scholar 

  10. Parker JC, Siegel RW (1990) J Mater Res 5:1246–1252

    Article  CAS  Google Scholar 

  11. Antonelli DM, Ying JY (1995) Angew Chem 34:2014–2017

    Article  CAS  Google Scholar 

  12. Wang YQ, Tang XH, Yin LX, Huang WP, Hacohen YR, Gedanken A (2000) Adv Mater 12:1183–1186

    Article  CAS  Google Scholar 

  13. Yan MC, Chen F, Zhang JL, Anpo M (2005) J Phys Chem B 109:8673–8678

    Article  CAS  Google Scholar 

  14. Erdural BK, Yurum A, Bakir U, Karakas G (2008) J Nanosci Nanotechnol 8(2):878–886

    Google Scholar 

  15. Wu M, Lin G, Chen D, Wang G, He D, Feng S, Xu R (2002) Chem Mater 14:1974–1980

    Article  CAS  Google Scholar 

  16. Narkhede VS, DeToni A, Narkhede VV, Guraya M, Niemantsverdriet JW, vandenBerg MWE, Gruenert W, Gies H (2009) Microporous Mesoporous Mater 118:52–60

    Google Scholar 

  17. Zhang W, Xin H (2012) Adv Mater Res 496:165–168

    Article  CAS  Google Scholar 

  18. van Grieken R, Aguado J, López-Muñoz MJ, Marugán J (2002) J Photochem Photobiol A: Chem 148:315–322

    Article  Google Scholar 

  19. Gao X, Wachs IE (1999) Catal Today 51:233–254

    Article  CAS  Google Scholar 

  20. Su C, Lin KF, Lin YH, You BH (2006) J Porous Mater 13:251–258

    Article  CAS  Google Scholar 

  21. Baraton MI, Merhari L (1998) Nano Struct Mater 10(5):699–713

    Google Scholar 

  22. Hsiunga TL, Wanga HP, Wang HC (2006) Radiat Phys Chem 75:2042–2045

    Article  Google Scholar 

  23. Kim KD, Kim HT (2003) Mater Lett 57:3211–3216

    Article  CAS  Google Scholar 

  24. Shelef M, McCabe RW (2000) Catal Today 62:35–50

    Article  CAS  Google Scholar 

  25. Sheintuch M, Schmidt H, Lecthman Y, Yahav G (1989) Appl Catal 49:55–65

    Article  CAS  Google Scholar 

  26. Schryer DR, Upchurch BT, Sidney BD, Brown KG, Hoflund GB, Herz RK (1991) J Catal 130:314–317

    Article  CAS  Google Scholar 

  27. Boulahouache A, Kons G, Lintz HG (1992) Appl Catal A 91:115–123

    Article  CAS  Google Scholar 

  28. Yoshida H, Tanaka T, Nakatsuka K, Funabiki T, Yoshida S (1994) Stud Surf Sci Catal 90:473–478

    Article  CAS  Google Scholar 

  29. Vorontsov AV, Savinov EV, Kurkin EN, Torbova OD, Parmon VN (1996) J React Kinet Catal Lett 62(1):83–88

    Article  Google Scholar 

  30. Kamegawa T, Takeuchi R, Matsuoka M, Anpo M (2006) Catal Today 111:248–253

    Article  CAS  Google Scholar 

  31. Hwang S, Lee MC, Choi W (2003) J Appl Catal B: Environ 46(1):49–63

    Article  CAS  Google Scholar 

  32. Kim JH, Han MK, Lee SM, Hwang DK, Shul YG (2008) Top Catal 47(3–4):109–115

    Article  CAS  Google Scholar 

  33. Venezia AM, Carlo GD, Pantaleo G, Liotta LF, Melaet G, Kruse N (2009) J Appl Catal B: Environ 88(3–4):430–437

    Article  CAS  Google Scholar 

  34. Beck C, Mallat T, Bürgi T, Baiker A (2001) J Catal 204:428–439

    Article  CAS  Google Scholar 

  35. Zhao Y, Xu L, Wang Y, Gao C, Liu D (2004) Catal Today 93:583–588

    Article  Google Scholar 

  36. Reddy BM, Reddy GK, Rao KN, Ganesh I, Ferreira JMF (2009) J Mater Sci 44:4874–4882

    Article  CAS  Google Scholar 

  37. Pickup DM, Mountjoy G, Wallidge GW, Anderson R, Cole JM, Newporta RJ, Smith ME (1999) J Mater Chem 9:1299–1305

    Article  CAS  Google Scholar 

  38. Mohamed MM, Salama TM, Yamaguchi T (2002) Colloid Surf A: Phys Eng Asp 207:25–32

    Article  CAS  Google Scholar 

  39. Fernandez T, Jose G, Mathew S, Rejikumar PR, Unnikrishnan NV (2007) J Sol-Gel Sci Technol 41:163–168

    Article  Google Scholar 

  40. Maira AJ, Coronado JM, Augugliaro V, Yeung KL, Conesa JC, Soria J (2001) J Catal 202:413–420

    Article  CAS  Google Scholar 

  41. Zhu H, Qin Z, Shan W, Shen W, Wang J (2004) J Catal 225:267–277

    Article  CAS  Google Scholar 

  42. Ghiotti G, Garrone E, Morterra C, Boccuzzi F (1979) J Phys Chem 83:2863–2869

    Article  CAS  Google Scholar 

  43. Morterra C, Cerrato G, Emanuel C, Bolis V (1993) J Catal 142:349

    Article  CAS  Google Scholar 

  44. Lenza RFS, Vasconcelos WL (2002) Mater Res 5(4):497–502

    Article  Google Scholar 

  45. Klein S, Thorimbert S, Maier WF (1996) J Catal 163:476–488

    Article  CAS  Google Scholar 

  46. Mariscal R, Granados ML, Fierro JLG, Sotelo JL, Martos C, van Grieken R (2000) Langmuir 16:9460–9467

    Article  CAS  Google Scholar 

  47. Timothy NO, Robert TB (1995) Environ Sci Technol 29:1223–1231

    Article  Google Scholar 

  48. Carp O, Huisman LC, Reler A (2004) Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  49. Kurtz RL, Stockbauer R, Madey TE, Roman E, de Segovia JL (1989) Surf Sci 218:178–200

    Google Scholar 

  50. Gopel W, Rocker G, Feierabend R (1983) Phys Rev E 28:3427–3438

    Article  CAS  Google Scholar 

  51. Anpo M, Kubokawa Y, Fujii T, Suzuki S (1984) J Phys Chem 88(2):2572–2575

    Article  CAS  Google Scholar 

  52. Venezia AM, Liotta LF, Pantaleo G, Parola VL, Deganello G, Beckc A, Frey ZKK, Horváth D, Guczi L (2003) Appl Catal A: Gen 251:359–368

    Article  CAS  Google Scholar 

  53. Mirkelamoglu B, Karakas G (2006) Appl Catal A: Gen 2006(281):275–284

    Google Scholar 

  54. Mirkelamoglu B, Karakas G (2006) Appl Catal A: Gen 2006(299):84

    Article  Google Scholar 

  55. Dong G, Wang J, Gao Y, Chen S (1999) Catal Lett 58:37–41

    Article  CAS  Google Scholar 

  56. Gerisher H, Heller AJ (1992) Electrochem Soc 139:113–121

    Article  Google Scholar 

  57. Anpo M, Takeuchi M (2003) J Catal 216:505–516

    Article  CAS  Google Scholar 

  58. Furube H, Asachi T, Masuhara H, Yamashita Y, Anpo M (2001) Chem Phys Lett 336:417–424

    Article  Google Scholar 

  59. Pavlova SN, Sadykov VA, Bulgakov NN, Bredikhin MN (2001) J Catal 204:378–392

    Article  Google Scholar 

  60. Roy S, Hegde MS, Ravishankar N, Madras G (2007) J Phys Chem C 111:8153–8160

    Article  CAS  Google Scholar 

  61. Erkan A, Bakir U, Karakas G (2008) J Photochem Photobiol A: Chem 184:313–321

    Article  Google Scholar 

  62. Costa CN, Christou SY, Georgiou G, Efstathiou AM (2003) J Catal 219:259–272

    Article  CAS  Google Scholar 

  63. Christou SY, Costa CN, Efstathiou AM (2004) Top Catal 30–31:325–331

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Turkish Scientific Research Council (TUBITAK) Grant 106M168. We acknowledge METU Center for use of the XRD and BET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurkan Karakas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakas, G., Yetisemiyen, P. Room Temperature Photocatalytic Oxidation of Carbon Monoxide Over Pd/TiO2–SiO2 Catalysts. Top Catal 56, 1883–1891 (2013). https://doi.org/10.1007/s11244-013-0124-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0124-0

Keywords

Navigation