Skip to main content
Log in

Preparation and characterization of high-surface-area titanium dioxide by sol-gel process

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

One of the important ways to improve photocatalytic efficiency is to prepare catalyst with enhanced surface area. In this work, titanium dioxide (TiO2) nanoparticles having enhanced surface area were synthesized under the interference of SiO2. The mixed oxide, SiO2-TiO2 (10% mol% Si), was prepared by a sol-gel procedure using titanium tetra-n-butoxide as Ti-precursor. The commercial SiO2 nanoparticles were added into the TiO2 sols after hydrolysis. After condensation and calcination heat treatment, the SiO2-TiO2 nanoparticles were obtained. To achieve the purpose of obtaining the high-surface-area TiO2, the SiO2 was removed subsequently by aqueous NaOH solution. The TiO2 products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and by N2 adsorption-desorption isotherm. A fine mesoporous structure was formed for as-prepared TiO2 after calcination at 400C and the average pore diameter was about 7 nm. The porous TiO2 products possess mixing phases of anatase and rutile. Phase transformation from anatase to rutile occurred when the samples were calcined. The phase transition temperature is sensitive to the silicon content. The particle size of ∼43 nm remained constant upon calcinations from 500 to 700C. The specific surface area was increased up to 66% compared to regular TiO2 samples that were prepared by the similar sol-gel procedure. The porous TiO2 nanostructures exhibited enhanced photocatalytic performance to decompose methylene blue under UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.-V. Nguyen and O.-B. Yang, Catal. Today 87, 69 (2003).

    Article  CAS  Google Scholar 

  2. C. Su, B.-Y. Hong, and C.-M. Tseng, Catal. Today 96, 119 (2004).

    Article  CAS  Google Scholar 

  3. A. Scolan and C. Sanchez, Chem. Mater. 10, 3217 (1998).

    Article  CAS  Google Scholar 

  4. M. Lal, V. Chhabra, P. Ayyub, and A. Maitra, J. Mater. Res. 13, 1249 (1998).

    Article  CAS  Google Scholar 

  5. M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, and R. Xu, Chem. Mater. 14, 1974 (2002).

    Article  CAS  Google Scholar 

  6. C.-C. Wang and J.Y. Ying, Chem. Mater. 11, 3113 (1999).

    Article  CAS  Google Scholar 

  7. R.S. Sonawane, S.G. Hegde, and M.K. Dongare, Mater. Chem. Phys. 77, 744 (2002).

    Article  Google Scholar 

  8. W. Que, Y. Zhou, Y.L. Lam, Y.C. Chan, S.D. Cheng, Z. Sun, and C.H. Kam, J. Sol-Gel Sci. Tech. 18, 77 (2000).

    Article  CAS  Google Scholar 

  9. M. Hirano, C. Nakahara, K. Ota, O. Tanaike, and M. Inagaki, J. Solid State Chem. 170, 39 (2000).

    Article  Google Scholar 

  10. M. Hirano, C. Nakahara, K. Ota, and M. Inagaki, J. Am. Ceram. Soc. 85, 1333 (2002).

    Article  CAS  Google Scholar 

  11. J. Han and E. Kumacheva, Langmuir 17, 7912 (2001).

    Article  CAS  Google Scholar 

  12. Y.-H. Zhang and A. Reller, Mater. Lett. 57, 4108 (2003).

    Article  CAS  Google Scholar 

  13. Y. Suyama and A. Kato, J. Ceram. Soc. Japan (Yogyo Kyokai-Shi) 86, 119 (1978).

    CAS  Google Scholar 

  14. X. Fu, L.A. Clark, Q. Yang, and M.A. Anderson, Environ. Sci. Technol. 30, 647 (1996).

    Article  CAS  Google Scholar 

  15. U. Diebold and T.E. Madey, Surf. Sci. Spectra 4, 227 (1996).

    Article  CAS  Google Scholar 

  16. H. Zhang, X. Luo, J. Xu, B. Xiang, and D. Yu, J. Phys. Chem. B 108, 14866 (2004).

    Article  CAS  Google Scholar 

  17. K.Y. Jung and S.B. Park, Appl. Catal. B: Environ. 25, 249 (2000).

    Article  CAS  Google Scholar 

  18. C. Su, C.M. Tseng, L.-F. Chen, B.-H. You, B.C. Hsu, and S.S. Chen, Thin Solid Films (in press).

  19. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity 2nd (Academic Press, 1982).

  20. R.W. Matthews, J. Chem. Soc., Faraday Trans. 1 85, 1291 (1989).

    Article  CAS  Google Scholar 

  21. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, and N. Serpone, J. Photochem. Photobiol. A 140, 163 (2001).

    Article  CAS  Google Scholar 

  22. C. Anderson and A.J. Bard, J. Phys. Chem. B 101, 2611 (1997).

    Article  CAS  Google Scholar 

  23. M. Hirano, K. Ota, M. Inagaki, and H. Iwata, J. Ceram. Soc. Jpn. 112, 143 (2004).

    Article  CAS  Google Scholar 

  24. K. Tanabe, T. Sumiyoshi, K. Shibata, T. Kiyoura, and J. Kitagawa, Bull. Chem. Soc. Jpn. 47, 1064 (1974).

    Article  CAS  Google Scholar 

  25. C.U.I. Odenbrand, J.G.M. Brandin, and G. Busca, J. Catal. 135, 132 (1992).

    Google Scholar 

  26. Z. Liu and R.J. Davis, J. Phys. Chem. 98, 1253 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaochin Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, C., Lin, KF., Lin, YH. et al. Preparation and characterization of high-surface-area titanium dioxide by sol-gel process. J Porous Mater 13, 251–258 (2006). https://doi.org/10.1007/s10934-006-8012-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-8012-7

Keywords

Navigation