Skip to main content
Log in

CO Oxidation over Au/TiO2–Carbon Catalysts: The Effect of Thermal Treatment, Stability and TiO2 Support Structure

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of thermal treatment on the catalyst structure and the CO oxidation performance of a Au/TiO2 catalyst supported on a carbon composite material has been studied. X-ray absorption spectroscopy shows that the carbon composite stabilises the TiO2 and prevent agglomeration of the particles. The activity measurements show that both Au and TiO2 need to be present in order to obtain catalytic activity. The catalytic performance was found to be strongly affected by thermal treatments of the active phase prior to the reaction. The thermal treatments have an effect on the ordering of the TiO2 structure, and on the CO oxidation activity. Heat treatment after Au deposition has a positive effect on the CO oxidation performance. This is attributed to the introduction of a stronger interaction between the oxide and Au which improves the catalytic activity. This also indicates that the TiO2 support and the Au–TiO2 interface play important roles in the CO oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309

    Article  CAS  Google Scholar 

  2. Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London

    Google Scholar 

  3. Serp P, Corrias M, Kakk P (2003) Appl Catal A 253:337

    Article  CAS  Google Scholar 

  4. Prati L, Martra G (1999) Gold Bull 32:96

    Article  CAS  Google Scholar 

  5. Hutchings GJ, Carrettin S, Landon P, Edwards JK, Enache D, Knight DW, Xu YJ, Carley AF (2006) Top Catal 38:223

    Article  CAS  Google Scholar 

  6. Okumura M, Tsubota S, Haruta M (2003) J Mol Catal A 199:73

    Article  CAS  Google Scholar 

  7. Hammer N, Kvande I, Xu X, Gunnarsson V, Tøtdal B, Chen D, Rønning M (2007) Catal Today 123:245

    Article  CAS  Google Scholar 

  8. Hammer N, Kvande I, Chen D, Rønning M (2007) Catal Today 122:365

    Article  CAS  Google Scholar 

  9. Hammer N, Kvande I, Van Beek W, Chen D, Rønning M (2007) Top Catal 45:25

    Article  CAS  Google Scholar 

  10. Hammer N, Zarubova S, Kvande I, Chen D, Rønning M (2007) Gold Bull 40:234

    Article  CAS  Google Scholar 

  11. Bulushev DA, Kiwi-Minsker L, Yuranov I, Suvorova EL, Buffat PA, Renken A (2002) J Catal 210:149–159

    Article  CAS  Google Scholar 

  12. Ma Z, Liang C, Overbury SH, Dai S (2007) J Catal 252:119–126

    Article  CAS  Google Scholar 

  13. Fu Q, Kudriavtseva S, Saltsburg H, Flytzani-Stephanopoulos M (2003) Chem Eng J 93:41

    Article  CAS  Google Scholar 

  14. George PP, Gedanken A, Perkas N, Zhong Z (2008) Ultrason Sonochem 15:539

    Article  CAS  Google Scholar 

  15. Kotobuki M, Leppelt R, Hansgen DA, Widmann D, Behm RJ (2009) J Catal 264:67–76

    Article  CAS  Google Scholar 

  16. Chambers A, Nemes T, Rodriguez N, Baker R (1998) J Phys Chem B 102:2251

    Article  CAS  Google Scholar 

  17. Pham Huu C, Keller N, Ehret G, Charbonniere L, Ziessler R, Ledoux M (2001) J Mol Catal A Chem 170:155

    Article  CAS  Google Scholar 

  18. Ledoux MJ, Pham-Huu C (2005) Catal Today 102–103:2

    Article  Google Scholar 

  19. Pham-Huu C, Ledoux M (2006) Top Catal 40:49

    Article  CAS  Google Scholar 

  20. Garcia-Bordejé E, Kvande I, Chen D, Rønning M (2006) Adv Mater 18:1589

    Article  Google Scholar 

  21. Jarrah N, Van Ommen JG, Lefferts L (2004) J Mater Chem 14:1590

    Article  CAS  Google Scholar 

  22. Jarrah N, Van Ommen JG, Lefferts L (2005) J Mater Chem 15:1946

    Article  CAS  Google Scholar 

  23. Subrenat A, Le Cloirec P (2003) J Environ Eng 129(12):1077

    Article  CAS  Google Scholar 

  24. Subrenat A, Baleo JN, Le Cloirec P (2001) Carbon 39:707

    Article  CAS  Google Scholar 

  25. Hammer N, Zscherpe T, Chen D, Rønning M (2011) Top Catal 54:922

    Article  CAS  Google Scholar 

  26. van den Berg MWE, De Toni A, Bandyopadhyay M, Gies H, Grünert W (2011) Appl Catal A 391:268

    Article  Google Scholar 

  27. Widmann D, Behm RJ (2011) Angew Chem Int Ed 50:10241

    Article  CAS  Google Scholar 

  28. Colón G, Hidalgo MC, Navío JA (2002) Catal Today 76:91

    Article  Google Scholar 

  29. Duff DG, Baiker A, Edwards PP (1993) J Chem Soc Chem Comm 96

  30. Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Nano Lett 2:615

    Article  CAS  Google Scholar 

  31. Ressler TJ (1997) J Physique IV C2

  32. EXCURVE98 CCLRC Daresbury Laboratory computer program

  33. Gurman SJ, Binsted N, Ross I (1984) J. Phys. C. 17:143

    Article  CAS  Google Scholar 

  34. Ravel B, Newville M (2005) J Synchrotron Rad 12(4):537

    Article  CAS  Google Scholar 

  35. Walker PL Jr (1990) Carbon 28:261

    Article  CAS  Google Scholar 

  36. Houllé M, Deneuve A, Amadou J, Bégin D, Pham-Huu C (2008) Carbon 46:76

    Article  Google Scholar 

  37. Park C, Keane MA (2004) J Catal 221:386

    Article  CAS  Google Scholar 

  38. Grunes LA (1983) Phys Rev B27:2111

    Google Scholar 

  39. Stewart SJ, Fernández-Garcia M, Belver C, Mun BS, Requejo FG (2006) J Phys Chem B 110:16482

    Article  CAS  Google Scholar 

  40. Farges F, Brown GE, Rehr JJ (1997) Phys Rev B 56:1809

    Article  CAS  Google Scholar 

  41. Luca V, Djajanti S, Howe RF (1998) J Phys Chem B 102:10650

    Article  CAS  Google Scholar 

  42. Nozawa S, Iwazumi T, Osawa H (2005) Phys Rev B 72:121101

    Article  Google Scholar 

  43. de Graaf J, van Dillen AJ, Jong KP, Köningsberger DC (2001) J Catal 203:307

    Article  Google Scholar 

  44. Ho K, Yeung KL (2007) Gold Bull 40:15

  45. Grunwaldt J-D, Kiener C, Wögerbauer C, Baiker A (1999) J Catal 181:223

    Article  CAS  Google Scholar 

  46. Grunwaldt J-D, Maciejewski M, Becker OS, Fabrizioli P, Baiker A (1999) J Catal 186:458

    Article  CAS  Google Scholar 

  47. Matthey D, Wang JG, Wendt S, Matthiesen J, Schaub R, Lægsgaard E, Hammer B, Besenbacher F (2007) Science 315:1692

    Article  CAS  Google Scholar 

  48. Park ED, Lee JS (1999) J Catal 186:1

    Article  CAS  Google Scholar 

  49. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the project teams at the Swiss-Norwegian Beam Lines (SNBL) at ESRF, Kaumudi Pandya at beamline X11A at the National Synchrotron Light Source at BNL, USA, and Luca Olivi at beamline 11.1, ELETTRA, Trieste, Italy, S.C.p.A. for their assistance. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. John C. Walmsley, SINTEF is acknowledged for conducting the TEM studies. The Research Council of Norway (NFR) is acknowledged for financial support through the SYNKROTRON programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Rønning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, N., Mathisen, K. & Rønning, M. CO Oxidation over Au/TiO2–Carbon Catalysts: The Effect of Thermal Treatment, Stability and TiO2 Support Structure. Top Catal 56, 637–649 (2013). https://doi.org/10.1007/s11244-013-0023-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0023-4

Keywords

Navigation