Skip to main content
Log in

Chiral Symmetry Breaking Observed for Cysteine on the Au(110)-(1×2) Surface

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A pronounced enantiomeric excess of ll-cysteine dimers is observed by scanning tunneling microscopy (STM) on the Au(110)-(1×2) surface after partial thermal desorption/decomposition of racemic cysteine. We systematically examine several possible origins for this intriguing observation of chiral symmetry breaking, including a chiral bias of the substrate, but remain unable to identify the source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A chiral bias in the deposited material could be achieved by either depositing different amounts of enantiomerically pure cysteine from two separate sources, or possibly by using a single source loaded with racemic DL cysteine enriched with enantiomerically pure l or d cysteine in which case the enantiomeric ratio in the deposit is determined by the vapour pressures of the racemate and the enantiopure crystals which in general are expected to be different [19].

References

  1. Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (2010) Tetrahedron Asymmetr 21:1030

    Article  CAS  Google Scholar 

  2. Ball P (2007) Chem World 4:30

    Google Scholar 

  3. Bonner WA (1995) Origins Life Evol Biosph 25:175

    Article  CAS  Google Scholar 

  4. Bonner WA (1996) AIP Conf Proc 379:17

    Article  CAS  Google Scholar 

  5. Kovacs KL (1979) Origins Life 9:219

    Article  CAS  Google Scholar 

  6. Goodman G, Gershwin ME (2006) Exp Biol Med (Maywood, NJ) 231:1587

    CAS  Google Scholar 

  7. Strasdeit H (2005) ChemBioChem 6:801

    Article  CAS  Google Scholar 

  8. Kondepudi D, Kaufman R, Singh N (1990) Science 250:975

    Article  CAS  Google Scholar 

  9. Buhse T, Durand D, Kondepudi D, Laudadio J, Spilker S (2000) Phys Rev Lett 84:4405

    Article  CAS  Google Scholar 

  10. Frank FC (1953) Biochim Biophys Acta 11:459

    Article  CAS  Google Scholar 

  11. Soai K, Shibata T, Morioka H, Choji K (1995) Nature (London) 378:767

    Article  CAS  Google Scholar 

  12. Blackmond DG, McMillan R, Ramdeehul S, Schorm A, Brown JM (2001) J Am Chem Soc 123:10103

    Article  CAS  Google Scholar 

  13. Saghatelian A, Yokobayashi Y, Soltani K, Ghadiri R (2001) Nature 409:797

    Article  CAS  Google Scholar 

  14. Singleton DA, Vo LK (2002) J Am Chem Soc 124:10010

    Article  CAS  Google Scholar 

  15. Siegel JS (2002) Nature (London) 419:346

    Article  CAS  Google Scholar 

  16. Klussmann M, Iwamura H, Mathew SP, Wells DH, Pandya U, Armstrong A, Blackmond DG (2006) Nature 441:621

    Article  CAS  Google Scholar 

  17. Perry RH, Wu CP, Nefliu M, Cooks RG (2007) Chem Commun 1071

  18. Fletcher SP, Jagt RBC, Feringa BL (2007) Chem Commun 2578

  19. Bellec A, Guillemin JC (2010) Chem Commun 46:1482

    Article  CAS  Google Scholar 

  20. Blackmond DG, Klussmann M (2007) Chem Commun 3990

  21. Sowerby SJ, Heckl WM (1998) Origins Life Evol Biosph 28:283

    Article  CAS  Google Scholar 

  22. Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T, Sato I (1999) J Am Chem Soc 121:11235

    Article  CAS  Google Scholar 

  23. Hazen RM, Filley TR, Goodfriend GA (2001) Proc Natl Acad Sci 98:5487

    Article  CAS  Google Scholar 

  24. Hazen RM (2001) Sci Am 284:76

    Article  CAS  Google Scholar 

  25. Hazen RM, Sholl DS (2003) Nat Mater 2:367

    Article  CAS  Google Scholar 

  26. Raval R (2009) Chem Soc Rev 38:707

    Article  CAS  Google Scholar 

  27. Elemans J, De Cat I, Xu H, De Feyter S (2009) Chem Soc Rev 38:722

    Article  CAS  Google Scholar 

  28. Gellman AJ (2010) ACS Nano 4:5

    Article  CAS  Google Scholar 

  29. Lorenzo MO, Baddeley CJ, Muryn C, Raval R (2000) Nature 404:376

    Article  CAS  Google Scholar 

  30. Raval R (2002) J Phys: Condensed Matter 14:4119

    Article  CAS  Google Scholar 

  31. Chen Q, Richardson NV (2004) Annu Rep Prog Chem C 100:313

    Article  CAS  Google Scholar 

  32. Ernst K-H (2006) Top Curr Chem 265:209

    Article  CAS  Google Scholar 

  33. Bohringer M, Morgenstern K, Schneider WD, Berndt R, Mauri F, De Vita A, Car R (1999) Phys Rev Lett 83:324

    Article  CAS  Google Scholar 

  34. Weckesser J, De Vita A, Barth JV, Cai C, Kern K (2001) Phys Rev Lett 87:096

    Article  Google Scholar 

  35. Chen Q, Richardson NV (2003) Nat Mater 2:324

    Article  CAS  Google Scholar 

  36. Weigelt S, Busse C, Petersen L, Rauls E, Hammer B, Gothelf KV, Besenbacher F, Linderoth TR (2006) Nat Mater 5:112

    Article  CAS  Google Scholar 

  37. Dmitriev A, Spillmann H, Stepanow S, Strunskus T, Woell C, Seitsonen AP, Lingenfelder M, Lin N, Barth JV, Kern K (2006) ChemPhysChem 7:2197

    Article  CAS  Google Scholar 

  38. Stevens F, Dyer DJ, Walba DM (1996) Angew Chem Int Ed Engl 35:900

    Article  CAS  Google Scholar 

  39. Fasel R, Parschau M, Ernst K-H (2006) Nature (London) 439:449

    Article  CAS  Google Scholar 

  40. Eckhardt CJ, Peachey NM, Swanson DR, Takacs JM, Khan MA, Gong X, Kim J-H, Wang J, Uphaus A (1993) Nature 362:614

    Article  CAS  Google Scholar 

  41. Eralp T, Shavorskiy A, Zheleva ZV, Held G, Kalashnyk N, Ning YX, Linderoth TR (2010) Langmuir 26:18841

    Article  CAS  Google Scholar 

  42. Ernst K-H (2008) Curr Opin Colloid Interface Sci 13:54

    Article  CAS  Google Scholar 

  43. Palmans ARA, Meijer EW (2007) Angew Chem Int Ed 46:8948

    Article  CAS  Google Scholar 

  44. Katsonis N, Xu H, Haak RM, Kudernac T, Tomovic Z, George S, Van der Auweraer M, Schenning A, Meijer EW, Feringa BL, De Feyter S (2008) Angew Chem Int Ed 47:4997

    Article  CAS  Google Scholar 

  45. Berg AM, Patrick DL (2005) Angew Chem Int Ed 44:1821

    Article  CAS  Google Scholar 

  46. Parschau M, Romer S, Ernst K-H (2004) J Am Chem Soc 126:15368

    Article  Google Scholar 

  47. Parschau M, Kampen T, Ernst KH (2005) Chem Phys Lett 407:433

    Article  CAS  Google Scholar 

  48. Roth C, Passerone D, Ernst KH (2010) Chem Commun 46:8645

    Article  CAS  Google Scholar 

  49. Fasel R, Parschau M, Ernst K-H (2006) Nature 439:449

    Article  CAS  Google Scholar 

  50. Haq S, Liu N, Humblot V, Jansen APJ, Raval R (2009) Nat Chem 1:409

    Article  CAS  Google Scholar 

  51. McFadden CF, Cremer PS, Gellman AJ (1996) Langmuir 12:2483

    Article  CAS  Google Scholar 

  52. Jenkins SJ, Pratt SJ (2007) Surf Sci Rep 62:373

    Article  CAS  Google Scholar 

  53. Ahmadi A, Attard G, Feliu J, Rodes A (1999) Langmuir 15:2420

    Article  CAS  Google Scholar 

  54. Horvath JD, Gellman AJ (2002) J Am Chem Soc 124:2384

    Article  CAS  Google Scholar 

  55. Kühnle A, Linderoth TR, Besenbacher F (2006) J Am Chem Soc 128:1076

    Article  Google Scholar 

  56. Zhao XY (2000) J Am Chem Soc 122:12584

    Article  CAS  Google Scholar 

  57. Besenbacher F, Lægsgaard E, Mortensen K, Nielsen U, Stensgaard I (1988) Rev Sci Instrum 59:1035

    Article  CAS  Google Scholar 

  58. Kühnle A, Linderoth TR, Hammer B, Besenbacher F (2002) Nature 415:891

    Article  Google Scholar 

  59. Jaffey DM, Madix RJ (1991) Surf Sci 258:359

    Article  CAS  Google Scholar 

  60. Kostelitz M, Domagne JL, Oudar J (1973) Surf Sci 34:431

    Article  CAS  Google Scholar 

  61. Luger P, Weber M (1999) Acta Crystallogr C 55:1882

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Danish Council for Independent Research | Natural Sciences, The Villum Kahn Foundation, The Carlsberg Foundation, the European Research Council (ERC) and the Danish National Research Foundation for support to the Sino-Danish Center for Molecular Nanostructures on Surfaces. AK acknowledges financial support from the German Research Foundation (DFG) through the Emmy Noether-program KU 1980/1-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trolle R. Linderoth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühnle, A., Linderoth, T.R. & Besenbacher, F. Chiral Symmetry Breaking Observed for Cysteine on the Au(110)-(1×2) Surface. Top Catal 54, 1384–1391 (2011). https://doi.org/10.1007/s11244-011-9765-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9765-z

Keywords

Navigation