Skip to main content
Log in

Leaching Kinetics of Fe2Al5 and Skeletal Iron Formation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Caustic leaching of fine particles of Fe2Al5 alloy to produce skeletal Fe catalysts was studied using a 24 factorial experimental design, in which alloy particle size, aqueous NaOH concentration, temperature and stirrer speed were varied. Analysis of the results from the design showed that the BET surface area of the skeletal iron increased with decreases in temperature, caustic concentration and particle size according to SBET = 222.7 − 0.461 · T − 2.35 · cNaOH − 0.0245 · D p. An Avrami–Erofeev model −ln(1 − α) = kt with an activation energy of 55 ± 5 kJ mol−1 and a shrinking core model for volume contraction 1 − (1 − α)1/3 = kt and an activation energy of 56 ± 5 kJ mol−1 provided the best fit to the kinetic data for leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raney M (1925) US Patent 1,563,587

  2. Raney M (1940) Ind Eng Chem 32:1199

    Article  CAS  Google Scholar 

  3. Smith AJ, Trimm DL (2005) Annu Rev Mater Res 35:127

    Article  CAS  Google Scholar 

  4. Smith AJ, Wainwright MS (2008) In: Ertl G, Knözinger H, Schütz F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 1. Wiley-VCH, Weinheim, pp 92–100

    Google Scholar 

  5. Johnston WD, Heikes RR, Petrolo J (1957) J Am Chem Soc 79:5388

    Article  CAS  Google Scholar 

  6. Zhou YH, Harmelin M, Bigot J (1991) Mater Sci Eng A 133:775

    Article  Google Scholar 

  7. Lu Y-J, Zhang Z-X, Zhou J-L (1999) J Nat Gas Chem 8:82

    CAS  Google Scholar 

  8. Lu Y, Zhou P, Gongguang W (2001) In: Characterization of skeleton iron catalyst for slurry phase FT synthesis. Proceedings of 18th Annual International Pittsburgh Coal Conference, Newcastle, Australia

  9. Zhou P, Abrams L, Long CM, Yijun L (2005) US Patent 6,903,141

  10. Freidlin LK, Rudneva KG, Sultanov AS (1954) Russ Chem Bull 3:435

    Article  Google Scholar 

  11. Harper MJ (2000) US Patent 6,087,296

  12. Nakabayashi I, Nakajima S, Yoshino T, Abe S (1986) Ind Eng Chem Prod Res Dev 25:23

    Article  CAS  Google Scholar 

  13. Court J, Lopez M (2002) French Patent FR2824830

  14. Lu Y-J, Zhang Z-X, Zhou J-L (1999) J Nat Gas Chem 8:248

    CAS  Google Scholar 

  15. Leoni TM (2010) PhD Thesis. University of New South Wales, Kensington, Australia

  16. Numprasanthai A (2009) M.Sc. thesis. University of New South Wales, Kensington, Australia

  17. StatEase Inc. (2007) DesignExpert 7.1.2. www.statease.com

  18. Kattner UR, Burton BP (1992) In: ASM handbooks online—alloy phase diagrams, vol 3. ASM International, Materials Park

  19. Smith AJ, Tran T, Wainwright MS (1999) J Appl Electrochem 29:1085

    Article  CAS  Google Scholar 

  20. Tomsett AD, Curry-Hyde HE, Wainwright MS, Young DJ, Bridgewater AJ (1987) Appl Catal 33:119

    Article  CAS  Google Scholar 

  21. Pannetier G, Souchay P (1967) In: Chemical kinetics. Elsevier, London

  22. Young DA (1966) In: Decomposition of solids. The international encyclopaedia of physical chemistry and chemical physics. Pergamon Press, Oxford

  23. Avrami M (1940) J Chem Phys 8:212

    Article  CAS  Google Scholar 

  24. Khawam A, Flanagan DR (2006) J Phys Chem B 110:17315

    Article  CAS  Google Scholar 

  25. Brown ME (1997) Thermochim Acta 300:93

    Article  CAS  Google Scholar 

  26. ur Rahman S, Al-Saleh MA (1999) Chem Eng J 72:229

    Article  Google Scholar 

  27. Choudhary VR, Chaudhrai SK, Gokarn AN (1989) Ind Eng Chem Res 28:33

    Article  CAS  Google Scholar 

  28. Levenspiel O (1998) In: Chemical reaction engineering. Wiley, New York

  29. Gistling AM, Brounshtein BI (1950) J Appl Chem USSR 23:1327

    Google Scholar 

  30. Jander W (1927) Z Anorg Allg Chem 163:1

    Article  CAS  Google Scholar 

  31. Smith AJ, Garciano LO, Tran T, Wainwright MS (2008) Ind Eng Chem Res 47:1409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Australian Research Council to the ARC Center of Excellence for Functional Nanomaterials for this research project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Wainwright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leoni, T.M., Smith, A.J. & Wainwright, M.S. Leaching Kinetics of Fe2Al5 and Skeletal Iron Formation. Top Catal 53, 1166–1171 (2010). https://doi.org/10.1007/s11244-010-9555-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9555-z

Keywords

Navigation