Skip to main content
Log in

Kinetic study of high-pressure acid leaching of Mg and Ni from serpentine

高压酸浸蛇纹石中镁和镍的动力学研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Inner Mongolian serpentine ore was subjected to sulfuric acid leaching tests, and the effects of the leaching process parameters on the leaching efficiency of different metals were investigated. The leaching efficiency of Mg, Fe, Al, Ni, and Co reaches 93.98%, 60.09%, 82.08%, 90.58%, and 94.06%, respectively, under the leaching conditions of 5 mol/L H2SO4, liquid/solid ratio of 4 mL/g, and leaching temperature 100 °C. Hence, the valuable metals in serpentine were effectively recovered by sulfuric acid leaching. The leaching behaviors of Mg, Fe, and a small amount of Al were analyzed using X-ray diffraction. The results show that the unreacted Mg and Fe remained as MgFe2O4, and Al formed Al2Si2O5(OH)4 in the leaching residue. The kinetics of Mg and Ni in the leaching process was studied respectively. The leaching kinetics of Mg conformed to the shrinking core model with an activation energy of 16.95 kJ/mol, which was controlled by the combination of the diffusion and chemical reaction. The leaching kinetics of Ni accorded with the Avrami equation with an activation energy of 11.57 kJ/mol, which was controlled by diffusion. In the study, the valuable metal elements were extracted from serpentine minerals with high efficiency and low cost, which possessed important practical values.

摘要

本文对内蒙古蛇纹石矿石进行了硫酸浸出试验, 并研究了不同浸出工艺参数对金属浸出效率的 影响。在H2SO4浓度为5 mol/L, 液固比为4 mL/g, 浸出温度为100 °C 的条件下, Mg, Fe, Al, Ni, Co 的浸出率分别达到93.98%, 60.09%, 82.08%, 90.58%, 94.06%, 表明硫酸浸出能有效地从蛇纹石 中回收有价金属。利用X射线衍射分析了浸出后Mg, Fe 和少量Al 在浸出渣中的浸出行为, 未反应的 Mg和Fe 以MgFe2O4的形式存在于浸出渣中, 少量的Al 以Al2Si2O5(OH)4的形式存在于浸出渣中。在浸 出过程中分别对Mg和Ni 进行了动力学研究, 其中Mg的浸出符合缩核模型, 在浸出过程中受扩散与 化学反应的混合控制, 活化能为16.95 kJ/mol。Ni 的浸出符合Avrami 方程, 在浸出过程中受扩散控制, 活化能为11.57 kJ/mol。该研究以高效, 低成本的方法从蛇纹石矿物中提取有了价金属元素, 具有重要 的实用价值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SIERRA C, CHOUINARD S, PASQUIER L C, et al. Feasibility study on the utilization of serpentine residues for Mg(OH)2 production [J]. Waste and Biomass Valorization, 2018, 9(10): 1921–1933. DOI: https://doi.org/10.1007/s12649-017-9926-9.

    Article  Google Scholar 

  2. PASQUIER L C, MERCIER G, BLAIS J F, et al. Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions [J]. Environmental Science & Technology, 2014, 48(9): 5163–5170. DOI: https://doi.org/10.1021/es405449v.

    Article  Google Scholar 

  3. TARTAJ P, CERPA A, GARCÍA-GONZÁLEZ M T, et al. Surface instability of serpentine in aqueous suspensions [J]. Journal of Colloid and Interface Science, 2000, 231(1): 176–181. DOI: https://doi.org/10.1006/jcis.2000.7109.

    Article  Google Scholar 

  4. ZHOU Shi-wei, WEI Yong-gang, LI Bo, et al. Kinetics study on the dehydroxylation and phase transformation of Mg3Si2O5(OH)4 [J]. Journal of Alloys and Compounds, 2017, 713: 180–186. DOI: https://doi.org/10.1016/j.jallcom.2017.04.162.

    Article  Google Scholar 

  5. LIU Kun, FENG Qi-ming, YANG Yan-xia, et al. Preparation and characterization of amorphous silica nanowires from natural chrysotile [J]. Journal of Non-Crystalline Solids, 2007, 353(16, 17): 1534–1539. DOI: https://doi.org/10.1016/j.jnoncrysol.2007.01.033.

    Article  Google Scholar 

  6. HSEU Z Y, SU Y C, ZEHETNER F, et al. Leaching potential of geogenic nickel in serpentine soils from Taiwan and Austria [J]. Journal of Environmental Management, 2017, 186: 151–157. DOI: https://doi.org/10.1016/j.jenvman.2016.02.034.

    Article  Google Scholar 

  7. MA Bin, HUANG Zhao-hui, FANG Ming-hao, et al. Preparation of porous silicon by magnesiothermic reduction from serpentine [J]. Key Engineering Materials, 2013, 544: 29–33. DOI: https://doi.org/10.4028/www.scientific.net/kem.544.29.

    Article  Google Scholar 

  8. RAMEZANI A, EMAMI S M, NEMAT S. Effect of waste serpentine on the properties of basic insulating refractories [J]. Ceramics International, 2018, 44(8): 9269–9275. DOI: https://doi.org/10.1016/j.ceramint.2018.02.138.

    Article  Google Scholar 

  9. LIN P C, HUANG Cheng-wei, HSIAO C T, et al. Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a gas-solid system [J]. Environmental Science & Technology, 2008, 42(8): 2748–2752. DOI: https://doi.org/10.1021/es072099g.

    Article  Google Scholar 

  10. BAI P, SHARRATT P, YEO T Y, et al. A facile route to preparation of high purity nanoporous silica from acid-leached residue of serpentine [J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 6915–6922. DOI: https://doi.org/10.1166/jnn.2014.8963.

    Article  Google Scholar 

  11. CHEN Bo-wei, CAI Liu-lu, WU Biao, et al. Investigation of bioleaching of a low grade nickel-cobalt-copper sulfide ore with high magnesium as olivine and serpentine from Lao [J]. Advanced Materials Research, 2013, 825: 396–400. DOI: https://doi.org/10.4028/www.scientific.net/amr.825.396.

    Article  Google Scholar 

  12. GRÉNMAN H, SALMI T, MURZIN D Y. Solidliquid reaction kinetics — Experimental aspects and model development [J]. Reviews in Chemical Engineering, 2011, 27(1, 2): 53–77. DOI: https://doi.org/10.1515/revce.2011.500.

    Google Scholar 

  13. GLADIKOVA L A, TETERIN V V, FREIDLINA R G. Production of magnesium oxide from solutions formed by acid processing of serpentinite [J]. Russian Journal of Applied Chemistry, 2008, 81(5): 889–891. DOI: https://doi.org/10.1134/s1070427208050339.

    Article  Google Scholar 

  14. DUTRIZAC J E, CHEN T T, WHITE C W. Fundamentals of serpentine leaching in hydrochloric acid media [M]// Magnesium Technology 2000. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013: 40–51. DOI: https://doi.org/10.1002/9781118808962.ch9.

    Chapter  Google Scholar 

  15. TEIR S, REVITZER H, ELONEVA S, et al. Dissolution of natural serpentinite in mineral and organic acids [J]. International Journal of Mineral Processing, 2007, 83(1, 2): 36–46. DOI: https://doi.org/10.1016/j.minpro.2007.04.001.

    Article  Google Scholar 

  16. RASCHMAN P, FEDOROČKOVÁ A, SUČIK G. Thermal activation of serpentine prior to acid leaching [J]. Hydrometallurgy, 2013, 139: 149–153. DOI: https://doi.org/10.1016/j.hydromet.2013.08.010.

    Article  Google Scholar 

  17. MCDONALD R G, WHITTINGTON B I. Atmospheric acid leaching of nickel laterites review [J]. Hydrometallurgy, 2008, 91(1–4): 35–55. DOI: https://doi.org/10.1016/j.hydromet.2007.11.009.

    Article  Google Scholar 

  18. AMER A M. Hydrometallurgical processing of Egyptian black shale of the Quseir-Safaga region [J]. Hydrometallurgy, 1994, 36(1): 95–107. DOI: https://doi.org/10.1016/0304-386X(94)90044-2.

    Article  Google Scholar 

  19. LI Min-ting, WEI Chang, QIU Shuang, et al. Kinetics of vanadium dissolution from black shale in pressure acid leaching [J]. Hydrometallurgy, 2010, 104(2): 193–200. DOI: https://doi.org/10.1016/j.hydromet.2010.06.001.

    Article  Google Scholar 

  20. ZHANG Ying, ZHANG Ting-an, DREISINGER D, et al. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching [J]. Journal of Hazardous Materials, 2019, 369: 632–641. DOI: https://doi.org/10.1016/j.jhazmat.2019.02.081.

    Article  Google Scholar 

  21. YANG Shi-cong, WEI Kui-xian, MA Wen-hui, et al. Kinetic mechanism of aluminum removal from diamond wire saw powder in HCl solution [J]. Journal of Hazardous Materials, 2019, 368: 1–9. DOI: https://doi.org/10.1016/j.jhazmat.2019.01.020.

    Article  Google Scholar 

  22. WANG Ben-jun, MU Lin-lin, GUO Song, et al. Lead leaching mechanism and kinetics in electrolytic manganese anode slime [J]. Hydrometallurgy, 2019, 183: 98–105. DOI: https://doi.org/10.1016/j.hydromet.2018.11.015.

    Article  Google Scholar 

  23. CHENG Wen-po, FU Chi-hua, CHEN P H, et al. Dynamics of aluminum leaching from water purification sludge [J]. Journal of Hazardous Materials, 2012, 217–218: 149–155. DOI: https://doi.org/10.1016/j.jhazmat.2012.03.007.

    Article  Google Scholar 

  24. ZHOU Xue-jiao, CHEN Yong-li, YIN Jian-guo, et al. Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials [J]. Waste Management, 2018, 76: 663–670. DOI: https://doi.org/10.1016/j.wasman.2018.03.051.

    Article  Google Scholar 

  25. PENG Hao, GUO Jing, ZHENG Xiao-gang, et al. Leaching kinetics of vanadium from calcification roasting converter vanadium slag in acidic medium [J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5119–5124. DOI: https://doi.org/10.1016/j.jece.2018.08.003.

    Article  Google Scholar 

  26. ZHANG Ju-hua, ZHANG Wei, ZHANG Li, et al. Mechanism of vanadium slag roasting with calcium oxide [J]. International Journal of Mineral Processing, 2015, 138: 20–29. DOI: https://doi.org/10.1016/j.minpro.2015.03.007.

    Article  Google Scholar 

  27. SHI Pei-yang, ZHANG Bo, JIANG Mao-fa. Kinetics of the carbonate leaching for calcium metavanadate [J]. Minerals, 2016, 6(4): 102. DOI: https://doi.org/10.3390/min6040102.

    Article  Google Scholar 

  28. XUE Nan-nan, ZHANG Yi-min, LIU Tao, et al. Mechanism of vanadium extraction from stone coal via hydrating and hardening of anhydrous calcium sulfate [J]. Hydrometallurgy, 2016, 166: 48–56. DOI: https://doi.org/10.1016/j.hydromet.2016.08.013.

    Article  Google Scholar 

  29. WANG Jing-peng, ZHANG Yi-min, HUANG Jing, et al. Kinetic and mechanism study of vanadium acid leaching from black shale using microwave heating method [J]. JOM, 2018, 70(6): 1031–1036. DOI: https://doi.org/10.1007/s11837-018-2859-3.

    Article  Google Scholar 

  30. LI Guang-hui, RAO Ming-jun, JIANG Tao, et al. Leaching of limonitic laterite ore by acidic thiosulfate solution [J]. Minerals Engineering, 2011, 24(8): 859–863. DOI: https://doi.org/10.1016/j.mineng.2011.03.010.

    Article  Google Scholar 

  31. DEMIRKıRAN N, KÜNKÜL A. Dissolution kinetics of ulexite in perchloric acid solutions [J]. International Journal of Mineral Processing, 2007, 83(1, 2): 76–80. DOI: https://doi.org/10.1016/j.minpro.2007.04.007.

    Article  Google Scholar 

  32. GU Fo-quan, ZHANG Yuan-bo, PENG Zhi-wei, et al. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching [J]. Journal of Hazardous Materials, 2019, 374: 83–91. DOI: https://doi.org/10.1016/j.jhazmat.2019.04.002.

    Article  Google Scholar 

  33. ZHANG Xi-hua, CAO Hong-bin, XIE Yong-bing, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis [J]. Separation and Purification Technology, 2015, 150: 186–195. DOI: https://doi.org/10.1016/j.seppur.2015.07.003.

    Article  Google Scholar 

  34. FENG Bo, LU Yi-ping, FENG Qi-ming, et al. Mechanisms of surface charge development of serpentine mineral [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1123–1128. DOI: https://doi.org/10.1016/S1003-6326(13)62574-1.

    Article  Google Scholar 

  35. KREVOR S C M, LACKNER K S. Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration [J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 1073–1080. DOI: https://doi.org/10.1016/j.ijggc.2011.01.006.

    Article  Google Scholar 

  36. CAPITANI G C, VENTRUTI G. Ni-serpentine nanoflakes in the garnierite ore from Campello Monti (Strona Valley, Italy): Népouite with some pecoraite outlines and the processing of Ni-containing ore bodies [J]. American Mineralogist, 2018, 103(4): 629–644. DOI: https://doi.org/10.2138/am-2018-6229.

    Article  Google Scholar 

  37. RAJAPAKSHA A U, VITHANAGE M, OZE C, et al. Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka [J]. Geoderma, 2012, 189–190: 1–9. DOI: https://doi.org/10.1016/j.geoderma.2012.04.019.

    Article  Google Scholar 

Download references

Funding

Project(51574286) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-yun Yang  (杨喜云).

Additional information

Contributors

The research object and proposal of this paper were jointly formulated by YANG Xi-yun and XU Hui. The experiment process and the initial draft of the manuscript were completed by WU Ling-long. ZHONG Zhi-jie and WANG Xiao-di provided assistance with experimental design and data analysis. All authors carefully studied reviewers’ comments and made suggestions for paper revisions.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Ll., Yang, Xy., Xu, H. et al. Kinetic study of high-pressure acid leaching of Mg and Ni from serpentine. J. Cent. South Univ. 29, 410–419 (2022). https://doi.org/10.1007/s11771-022-4912-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4912-1

Key words

关键词

Navigation