Skip to main content

Advertisement

Log in

Co–Ni Catalysts Derived from Hydrotalcite-Like Materials for Hydrogen Production by Ethanol Steam Reforming

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of Co–Ni catalysts, prepared from hydrotalcite (HT)-like materials by co-precipitation, has been studied for the hydrogen production by ethanol steam reforming. The total metal loading was fixed at 40% and the Co–Ni composition was varied (40–0, 30–10, 20–20, 10–30 and 0–40). The catalysts were characterized using X-ray diffraction, N2 physisorption, H2 chemisorption, temperature-programmed reduction, scanning transmission electron microscope and energy dispersive spectroscopy. The results demonstrated that the particle size and reducibility of the Co–Ni catalysts are influenced by the degree of formation of a HT-like structure, increasing with Co content. All the catalysts were active and stable at 575 °C during the course of ethanol steam reforming with a molar ratio of H2O:ethanol = 3:1. The activity decreased in the order 30Co–10Ni > 40Co ~ 20Ni–20Co ~ 10Co–30Ni > 40Ni. The 40Ni catalyst displayed the strongest resistance to deactivation, while all the Co-containing catalysts exhibited much higher activity than the 40Ni catalyst. The hydrogen selectivities were high and similar among the catalysts, the highest yield of hydrogen was found over the 30Co–10Ni catalyst. In general, the best catalytic performance is obtained with the 30Co–10Ni catalyst, in which Co and Ni are intimately mixed and dispersed in the HT-derived support, as indicated by the STEM micrograph and complementary mapping of Co, Ni, Al, Mg and O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuel 19:2098

    Article  CAS  Google Scholar 

  2. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39

    Article  CAS  Google Scholar 

  3. Ryden M, Lyngfelt A (2006) Int J Hydrogen Energy 31:1271

    Article  CAS  Google Scholar 

  4. Ochoa-Fernandez E, Haugen G, Zhao T, Ronning M, Aartun I, Borresen B, Rytter E, Ronnekleiv M, Chen D (2007) Green Chem 9:654

    Article  CAS  Google Scholar 

  5. Hossain MM, de Lasa HI (2007) AIChE J 53:1817

    Article  CAS  Google Scholar 

  6. Ryden M, Lyngfelt A, Mattisson T (2006) Fuel 85:1631

    Article  CAS  Google Scholar 

  7. Hossain MM, Sedor KE, de Lasa HI (2007) Chem Eng Sci 62:5464

    Article  CAS  Google Scholar 

  8. Ni M, Leung DYC, Leung MKH (2007) Int J Hydrogen Energy 32:3238

    Article  CAS  Google Scholar 

  9. Onsan ZI (2007) Turk J Chem 31:531

    CAS  Google Scholar 

  10. Bichon P, Haugom G, Venvik HJ, Holmen A, Blekkan EA (2008) Top Catal 49:38

    Article  CAS  Google Scholar 

  11. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2003) J Power Sour 124:99

    Article  CAS  Google Scholar 

  12. Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S, Cavallaro S (2004) Catal Commun 5:611

    Article  CAS  Google Scholar 

  13. Montini T, De Rogatis L, Gombac V, Fornasiero P, Graziani M (2007) Appl Catal A 71:125

    Article  CAS  Google Scholar 

  14. Kugai J, Velu S, Song CS (2005) Catal Lett 101:255

    Article  CAS  Google Scholar 

  15. Haga F, Nakajima T, Yamashita K, Mishima S, Suzuki S (1997) Nippon Kagaku Kaishi 33

  16. Hu X, Lu GX (2007) J Mol Catal A Chem 261:43

    Article  CAS  Google Scholar 

  17. Choudhary VR, Mamman AS (1998) J Chem Technol Biotechnol 73:345

    Article  CAS  Google Scholar 

  18. Hardiman KA, Hsu CH, Ying TT, Adesina AA (2005) J Mol Catal A Chem 239:41

    Article  CAS  Google Scholar 

  19. Biswas P, Kunzru D (2007) Catal Lett 118:36

    Article  CAS  Google Scholar 

  20. Youn MH, Seo JG, Kim P, Kim JJ, Lee HI, Song IK (2006) J Power Sour 162:1270

    Article  CAS  Google Scholar 

  21. Svoboda K, Siewiorek A, Baxter D, Rogut J, Pohorely M (2008) Energy Convers Manage 49:221

    Article  CAS  Google Scholar 

  22. Chen D, Bjorgum E, Lodeng R, Christensen KO, Holmen (2004) In: Bao X, Xu Y (eds) Studies in surface science and catalysis, vol 147. Elsevier Science, Amsterdam, 139 p

  23. Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Norskov JK, Stensgaard I (1998) Science 279:1913

    Article  CAS  Google Scholar 

  24. Chen D, Christensen KO, Ochoa-Fernandez E, Yu ZX, Totdal B, Latorre N, Monzon A, Holmen A (2005) J Catal 229:82

    Article  CAS  Google Scholar 

  25. Christensen KO, Chen D, Lodeng R, Holmen A (2006) Appl Catal A 314:9

    Article  CAS  Google Scholar 

  26. Frusteri F, Freni S, Chiodo V, Donato S, Bonura G, Cavallaro S (2006) Int J Hydrog Energy 31:2193

    Article  CAS  Google Scholar 

  27. Homs N, Llorca J, de la Piscina PR (2006) Catal Today 116:361

  28. Wang H, Liu PX, Liu Y, Qin YN (2006) Chin. J. Catal 27:976

    CAS  Google Scholar 

  29. Zhang BC, Li Y, Cai WJ, Tang XL, Xu YD, Shen WJ (2006) Chin J Catal 27:567

    CAS  Google Scholar 

  30. Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173

    Article  CAS  Google Scholar 

  31. Ochoa-Fernandez E, Lacalle-Vila C, Christensen KO, Walmsley JC, Ronning M, Holmen A, Chen D (2007) Top Catal 45:3

    Article  CAS  Google Scholar 

  32. PDF-2 (1994) Joint Committee on Powder Diffraction Standards, International Center of Diffraction Data, Park Lane Swarthmore, Pennsylvania, USA

  33. Yu JJ, Jiang Z, Zhu L, Hao ZP, Xu ZP (2006) J. Phys. Chem. B 110:4291

    Article  CAS  Google Scholar 

  34. Kawabata T, Shinozuka Y, Ohishi Y, Shishido T, Takaki K, Takehira K (2005) J Mol Catal A Chem 236:206

    Article  CAS  Google Scholar 

  35. Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E (1996) J Phys Chem 100:8535

    Article  CAS  Google Scholar 

  36. Bartholomew CH (1990) Catal Lett 7:27

    Article  CAS  Google Scholar 

  37. Chmielarz L, Kustrowski P, Rafalska-Lasocha A, Dziembaj R (2003) Thermochim Acta 395:225

    Article  CAS  Google Scholar 

  38. Unnikrishnan R, Narayanan S (1999) J Mol Catal A Chem 144:173

    Article  CAS  Google Scholar 

  39. Melo F, Morlanés N (2008) Catal Today 133–135:374

    Article  Google Scholar 

  40. Benito M, Sanz JL, Isabel R, Padilla R, Arjona R, Daza L (2005) J Power Sour 151:11

    Article  CAS  Google Scholar 

  41. Song H, Zhang LZ, Watson RB, Braden D, Ozkan US (2007) Catal Today 129:346

    Article  CAS  Google Scholar 

  42. Resini C, Cavallaro S, Frusteri F, Freni S, Busca G (2007) React Kinet Catal Lett 90:117

    Article  CAS  Google Scholar 

  43. Shustorovich E, Sellers H (1998) Surf Sci Rep 31:5

    Article  Google Scholar 

Download references

Acknowledgement

The Norwegian Research Council (NFR) is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Berntsen, H., Ochoa-Fernández, E. et al. Co–Ni Catalysts Derived from Hydrotalcite-Like Materials for Hydrogen Production by Ethanol Steam Reforming. Top Catal 52, 206–217 (2009). https://doi.org/10.1007/s11244-008-9157-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9157-1

Keywords

Navigation