Skip to main content
Log in

Hydrogen production by ethanol steam reforming over Ni–Co–Al mixed oxides derived from LDH

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The hydrogen production by ethanol steam reforming over Ni–Co–Al mixed oxides derived from layered double hydroxides is evaluated in this work. The catalysts were prepared via coprecipitation and characterized through N2 adsorption and desorption measurements, X-ray diffraction (XRD), temperature programmed reduction (TPR), CO2 desorption and oxidation, and scanning electron microscopy. The catalyst activity was evaluated in a fixed bed reactor between 400 and 600 °C, using ethanol and water in a 1:3 ratio, with online analysis of products by gas chromatography. Increasing the amount of Co increased surface area. XRD analysis revealed a mixture of Ni–Al and Co-Al oxides after calcination. The TPR profiles revealed that an increase in Co content leads to a more stable mixed oxide phase. The activity results showed that H2 selectivity increases with reaction temperature and Co content in the catalyst. The high selectivity for H2 is attributed to methane decomposition being favored. Hence the larger production of carbon is promoted by the excess of Co in the catalyst with the highest amount of Co. The decomposition of ethanol producing CO, CH4, and H2 is favored at higher temperatures. The selectivity for H2 remained above 90% in long term tests at 600 °C. XRD analysis after reactions showed that the presence of Co decreases the sintering of catalysts. The compromise between resistance to sintering and carbon deposition points to a medium amount of Co in the catalyst. All catalysts showed metallic phases after the reaction, demonstrating that the reduction step is not necessary for this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. J.N. Armor, Appl. Catal. A (1999). https://doi.org/10.1016/S0926-860X(99)00273-2

    Article  Google Scholar 

  2. S. Ramesh, E. Yang, J. Jung, D. Moon, Int. J. Hydrog. Energy (2015). https://doi.org/10.1016/j.ijhydene.2015.02.013

    Article  Google Scholar 

  3. G. Chen, J. Yao, J. Liu, B. Yan, R. Shan, Bioresour. Technol (2015). https://doi.org/10.1016/j.biortech.2015.09.009

    Article  PubMed  Google Scholar 

  4. T. Mondal, N. Kaul, R. Mittal, K.K. Pant, Top. Catal. (2016). https://doi.org/10.1007/s11244-016-0662-3

    Article  Google Scholar 

  5. S. Ogo, Y. Sekine, Fuel Process. Technol. (2020). https://doi.org/10.1016/j.fuproc.2019.106238

    Article  Google Scholar 

  6. P. Mckendry, Bioresour Technol. (2002). https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  PubMed  Google Scholar 

  7. P. Mckendry, Bioresour Technol. (2002). https://doi.org/10.1016/S0960-8524(01)00119-5

    Article  PubMed  Google Scholar 

  8. P.R.D.L. Piscina, N. Homs, Chem. Soc. Rev. (2008). https://doi.org/10.1039/B712181B

    Article  Google Scholar 

  9. A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energy Fuels. (2005). https://doi.org/10.1021/ef0500538

    Article  Google Scholar 

  10. L.V. Mattos, G. Jacobs, B.H. Davis, F.B. Noronha, Chem. Rev. (2012). https://doi.org/10.1021/cr2000114

    Article  PubMed  Google Scholar 

  11. S. Nanda, R. Rana, Y. Zheng, J.A. Kozinski, A.K. Dalai, Sustain. Energy Fuels. (2017). https://doi.org/10.1039/C7SE00212B

    Article  Google Scholar 

  12. Y.I. Pyatnitsky, L.Y. Dolgykh, I.L. Stolyarchuk, P.E. Strizhak, Theor. Exp. Chem. (2013). https://doi.org/10.1007/s11237-013-9327-5

    Article  Google Scholar 

  13. Y.C. Sharma, A. Kumar, R. Prasad, S.N. Upadhyay, Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2017.02.049

    Article  Google Scholar 

  14. D. Zanchet, J.B.O. Santos, S. Damyanova, J.M.R. Gallo, J.M.C. Bueno, ACS Catal. (2015). https://doi.org/10.1021/cs5020755

    Article  Google Scholar 

  15. P.P. Singh, N. Nirmalkara, T. Mondal, Sustain. Energy Fuels. (2022). https://doi.org/10.1039/D1SE01786A

    Article  Google Scholar 

  16. P.P. Singh, A. Jaswal, N. Nirmalkara, T. Mondal, Renew. Energy. (2023). https://doi.org/10.1016/j.renene.2023.03.057

    Article  Google Scholar 

  17. J.L. Contreras, J. Salmones, J.A. Cólin-Luna, L. Nuño, B. Quintana, I. Córdova, B. Zeifert, C. Tapia, G.A. Fuentes, Int. J. Hydrog Energy. (2014). https://doi.org/10.1016/j.ijhydene.2014.08.072

    Article  Google Scholar 

  18. J.P. Breen, R. Burch, H.M. Coleman, Appl. Catal. B (2002). https://doi.org/10.1016/S0926-3373(02)00075-9

    Article  Google Scholar 

  19. S. Cavallaro, V. Chiodo, S. Freni, N. Mondello, F. Frusteri, Appl. Catal. A (2003). https://doi.org/10.1016/S0926-860X(03)00189-3

    Article  Google Scholar 

  20. D.K. Liguras, D.I. Kondarides, X.E. Verykios, Appl. Catal. B (2003). https://doi.org/10.1016/S0926-3373(02)00327-2

    Article  Google Scholar 

  21. M. Bilal, S.D. Jackson, Catal. Sci. Technol. (2013). https://doi.org/10.1039/C2CY20703F

    Article  Google Scholar 

  22. F. Auprêtre, C. Descorme, D. Duprez, Catal. Commun. (2002). https://doi.org/10.1016/S1566-7367(02)00118-8

    Article  Google Scholar 

  23. C. Ciftci, D.A.J.M. Ligthart, P. Pastorino, E.J.M. Hensen, Appl. Catal. B (2013). https://doi.org/10.1016/j.apcatb.2012.10.029

    Article  Google Scholar 

  24. S.M.D. Lima, A.M. Silva, I.O.D. Cruz, G. Jacobs, B.H. Davis, L.V. Mattos, F.B. Noronha, Catal. Today. (2008). https://doi.org/10.1016/j.cattod.2008.06.014

    Article  Google Scholar 

  25. J.Y.Z. Chiou, J.Y. Siang, S.Y. Yang, K.F. Ho, C.L. Lee, C.T. Yeh, C.B. Wang, Int. J. Hydrog Energy. (2012). https://doi.org/10.1016/j.ijhydene.2012.02.081

    Article  Google Scholar 

  26. M.A. Goula, S.K. Kontou, P.E. Tsiakaras, Appl. Catal. B (2004). https://doi.org/10.1016/j.apcatb.2003.12.001

    Article  Google Scholar 

  27. F. Wang, Y. Li, W. Cai, E. Zhan, X. Mu, W. Shen, Catal. Today. (2009). https://doi.org/10.1016/j.cattod.2009.01.027

    Article  Google Scholar 

  28. D.K. Liguras, K. Goundani, X.E. Verykios, J. Power Sour. (2004). https://doi.org/10.1016/j.jpowsour.2003.12.008

    Article  Google Scholar 

  29. S. Andonova, C.N.D. Ávila, K. Arishtirova, J.M.C. Bueno, S. Damyanova, Appl. Catal. B (2011). https://doi.org/10.1016/j.apcatb.2011.04.029

    Article  Google Scholar 

  30. G. Busca, U. Costantino, T. Montanari, G. Ramis, C. Resini, M. Sisani, Int. J. Hydrog Energy. (2010). https://doi.org/10.1016/j.ijhydene.2010.02.124

    Article  Google Scholar 

  31. A. Rodriguez-Gomez, A. Caballero, Mol. Catal. (2018). https://doi.org/10.1016/j.mcat.2018.02.011

    Article  Google Scholar 

  32. N. Pinton, M.V. Vidal, M. Signoretto, A. Martínez-Arias, V.C. Corberán, Catal. Today. (2017). https://doi.org/10.1016/j.cattod.2017.06.022

    Article  Google Scholar 

  33. G. Garbarino, T. Cavattoni, P. Riani, R. Brescia, F. Canepa, G. Busca, Catal. Lett. (2019). https://doi.org/10.1007/s10562-019-02688-9

    Article  Google Scholar 

  34. N.D. Charisiou, G. Siakavelas, K.N. Papageridis, A. Baklavaridis, L. Tzounis, K. Polychronopoulou, M.A. Goula, Int. J. Hydrog Energy. (2017). https://doi.org/10.1016/j.ijhydene.2017.04.048

    Article  Google Scholar 

  35. N.D. Charisiou, G. Siakavelas, L. Tzounis, V. Sebastian, A. Monzon, M.A. Baker, S.J. Hinder, K. Polychronopoulou, I.V. Yentekakis, M.A. Goula, Int. J. Hydrog Energy. (2018). https://doi.org/10.1016/j.ijhydene.2018.08.074

    Article  Google Scholar 

  36. T. Cui, Q. Chen, Y. Zhang, B. Nie, B. Yang, Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.154002

    Article  Google Scholar 

  37. S.Y. Foo, C.K. Cheng, T.-H. Nguyen, E.M. Kennedy, B.Z. Dlugogorski, A.A. Adesina, Catal. Commun. (2012). https://doi.org/10.1016/j.catcom.2012.06.003

    Article  Google Scholar 

  38. X. Gao, J. Li, M. Zheng, S. Cai, J. Zhang, S. Askari, N. Dewangan, J. Ashok, S. Kawi, Process Saf. Environ Prot. (2021). https://doi.org/10.1016/j.psep.2021.10.051

    Article  Google Scholar 

  39. U. Sikander, S. Sufian, M.A. Salam, Int. J. Hydrog Energy. (2017). https://doi.org/10.1016/j.ijhydene.2017.06.089

    Article  Google Scholar 

  40. F. Cavani, F. Trifirb, A. Vaccari, Catal. Today. (1991). https://doi.org/10.1016/0920-5861(91)80068-K

    Article  Google Scholar 

  41. K.H. Goh, T.T. Lim, Z. Dong, Water Res. (2008). https://doi.org/10.1016/j.watres.2007.10.043

    Article  PubMed  Google Scholar 

  42. G.D. Souza, V.C. Ávila, N.R. Marcílio, O.W. Perez-Lopez, Pro Eng. (2012). https://doi.org/10.1016/j.proeng.2012.07.575

    Article  Google Scholar 

  43. J.L. Contreras, A. Figueroa, B. Zeifert, J. Salmones, G.A. Fuentes, T. Vázquez, D. Angeles, L. Nuño, Int. J. Hydrog Energy. (2021). https://doi.org/10.1016/j.ijhydene.2020.11.143

    Article  Google Scholar 

  44. A.F. Cunha, Y.J. Wu, J.C. Santos, A.E. Rodrigues, Chem. Eng. Res. Des. (2013). https://doi.org/10.1016/j.cherd.2012.09.015

    Article  Google Scholar 

  45. H. Muroyama, R. Nakase, T. Matsui, K. Eguchi, Int. J. Hydrog Energy. (2010). https://doi.org/10.1016/j.ijhydene.2009.12.083

    Article  Google Scholar 

  46. V. Mas, M.L. Dieuzeide, M. Jobbágy, G. Baronetti, N. Amadeo, M. Laborde, Catal. Today. (2008). https://doi.org/10.1016/j.cattod.2007.11.032

    Article  Google Scholar 

  47. E. Bolshak, S. Abelló, D. Montané, Int. J. Hydrog Energy. (2013). https://doi.org/10.1016/j.ijhydene.2013.02.077

    Article  Google Scholar 

  48. M. Li, X. Wang, S. Li, S. Wang, X. Ma, Int. J. Hydrog Energy. (2010). https://doi.org/10.1016/j.ijhydene.2010.04.105

    Article  Google Scholar 

  49. A.J. Vizcaíno, M. Lindo, A. Carrero, J.A. Calles, Int. J. Hydrog Energy. (2012). https://doi.org/10.1016/j.ijhydene.2011.04.179

    Article  Google Scholar 

  50. S. Bepari, S. Basu, N.C. Pradhan, A.K. Dalai, Catal. Today (2017). https://doi.org/10.1016/j.cattod.2017.01.027

    Article  Google Scholar 

  51. S. Casenave, H. Martinez, C. Guimon, A. Auroux, V. Hulea, A. Cordoneanu, E. Dumitriu, Thermochim. Acta (2001). https://doi.org/10.1016/S0040-6031(01)00606-2

    Article  Google Scholar 

  52. C.O. Calgaro, O.W. Perez-Lopez, Int. J. Hydrog Energy. (2019). https://doi.org/10.1016/j.ijhydene.2019.05.113

    Article  Google Scholar 

  53. O.W. Perez-Lopez, A. Senger, N.R. Marcilio, M.A. Lansarin, Appl. Catal. A (2006). https://doi.org/10.1016/j.apcata.2006.02.024

    Article  Google Scholar 

  54. N.A. Hermes, M.A. Lansarin, O.W. Perez-Lopez, Catal. Lett. (2011). https://doi.org/10.1007/s10562-011-0611-5

    Article  Google Scholar 

  55. M. Rosset, L.A. Féris, O.W. Perez-Lopez, Int. J. Hydrog Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.03.150

    Article  Google Scholar 

  56. L. Zardin, O.W. Perez-Lopez, Int. J. Hydrog Energy. (2017). https://doi.org/10.1016/j.ijhydene.2017.02.153

    Article  Google Scholar 

  57. C. Escobar, O.W. Perez-Lopez, Catal. Lett. (2014). https://doi.org/10.1007/s10562-014-1234-4

    Article  Google Scholar 

  58. C.O. Calgaro, O.W. Perez-Lopez, Int. J. Hydrog Energy. (2017). https://doi.org/10.1016/j.ijhydene.2017.10.082

    Article  Google Scholar 

  59. D.D.S. Lima, Y.R. Dias, O.W. Perez-Lopez, Sustain. Energy Fuels. (2020). https://doi.org/10.1039/D0SE01059F

    Article  Google Scholar 

  60. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. (2015). https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  61. R. Guil-López, R.M. Navarro, M.A. Peña, J.L.G. Fierro, Int. J. Hydrog Energy. (2011). https://doi.org/10.1016/j.ijhydene.2010.10.084

    Article  Google Scholar 

  62. M.A. Salam, S. Sufian, Adv. Mater. Res. (2014). https://doi.org/10.4028/www.scientific.net/AMR.917.360

    Article  Google Scholar 

  63. J. Valecillos, S. Iglesias-Vázquez, L. Landa, A. Remiro, J. Bilbao, A.G. Gayubo, Energy Fuels. (2021). https://doi.org/10.1021/acs.energyfuels.1c01670

    Article  PubMed  PubMed Central  Google Scholar 

  64. C. Wang, Y. Wang, M. Chen, J. Hu, D. Liang, Z. Tang, Z. Yang, J. Wang, H. Zhang, Energy (2021). https://doi.org/10.1016/j.energy.2020.118971

    Article  PubMed  Google Scholar 

  65. T. Mondal, K.K. Pant, A.K. Dalai, Int. J. Hydrog Energy. (2015). https://doi.org/10.1016/j.ijhydene.2014.12.070

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by CAPES (Brazilian Agency for Improvement of Graduate Personnel) and CNPq (National Council for Scientific and Technological Development).

Funding

This work was supported by CAPES (Brazilian Agency for Improvement of Graduate Personnel) and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq.

Author information

Authors and Affiliations

Authors

Contributions

IW: writing—original draft.OP: -supervision, writing—review and editing.

Corresponding author

Correspondence to Oscar W. Perez-Lopez.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 678.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenzel, I.G., Perez-Lopez, O.W. Hydrogen production by ethanol steam reforming over Ni–Co–Al mixed oxides derived from LDH. J Porous Mater 31, 69–80 (2024). https://doi.org/10.1007/s10934-023-01495-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01495-3

Keywords

Navigation