Skip to main content
Log in

Mesoporous-molecular-sieve-supported Polymer Sorbents for Removing H2S from Hydrogen Gas Streams

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of sorbents with a linear polyethylenimine (PEI) supported on the mesoporous molecular sieves, including MCM-41, MCM-48 and SBA-15, have been prepared and used to remove H2S from a model gas containing 0.40 v% of H2S and 20 v% H2 in N2 gas. The sorption was conducted in a fixed-bed system at a temperature range of 22–75 °C, a GHSV range of 337–1,011 h−1 and atmospheric pressure. The effects of the operating temperature, GHSV, the amount of PEI loading and the different molecular sieve supports were studied. A reduction in the temperature and GHSV improves the sorption performance of the supported PEI sorbents. A synergetic effect of the SBA−15 support and PEI on the H2S sorption performance was observed. Loading 50 wt% PEI on SBA-15 gave the best breakthrough capacity, while loading 65 wt% PEI on SBA-15 had the highest saturation capacity. The mesoporous molecular sieve with large pore size and three-dimensional channel structure favors increasing the kinetic capacity of the supported PEI sorbent. In addition, the developed sorbents can be regenerated easily at mild conditions (temperature range of 75–100 °C) and have excellent regenerability and stability. The results indicate that the mesoporous-molecular-sieve-supported polymer sorbents are promising for removing H2S from hydrogen gas streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Office of Science and Office of Fossil Energy, USDOE (1999) Carbon sequestration, State of the Science, Washington, DC

  2. Registry of Toxic Effects of Chemical Substances (1980) Lewis Snr RJ, Tatken RL (eds) US Department of Health and Human Services, Cincinnati, vol 1, OH, USA, P763

  3. Bartholomew CH, Agrawal PK, Katzer JR (1982) Adv Catal 31:135

    Article  CAS  Google Scholar 

  4. Ahmed MA, Alonso L, Palacios JM, Cilleruelo C, Abanades JC (2000) Solid State Ionics 138:51

    Article  CAS  Google Scholar 

  5. Elseviers WF, Verelst H (1999) Fuel 78:601

    Article  CAS  Google Scholar 

  6. Novochinskii II, Song CS, Ma XL, Liu X, Shore L, Lampert J, Farrauto RJ (2004) Energy Fuels 18:576

    Article  CAS  Google Scholar 

  7. Karayilan D, Dogu T, Yasyerli S, Dogu G (2005) Ind Eng Chem Res 44:5221

    Article  CAS  Google Scholar 

  8. Jun HK, Koo JH, Lee TJ, Ryu SO, Yi CK, Ryu CK, Kim JC (2004) Energy Fuels 18:41

    Article  CAS  Google Scholar 

  9. Ikenaga N, Ohgaito Y, Matsushima H, Suzuki T (2004) Fuel 83:661

    Article  CAS  Google Scholar 

  10. Hopton GU, Griffith RH (1946) Gas J 274:4311

    Google Scholar 

  11. Davidson JM, Lawrie CH, Sohail K (1995) Ind Eng Chem Res 34:2981

    Article  CAS  Google Scholar 

  12. Sasaoka E, Hirano S, Kasasoka S, Sakata Y (1994) Energy Fuels 8:1100

    Article  CAS  Google Scholar 

  13. Carnes CL, Klabunde KJ (2002) Chem Mater 14:1806

    Article  CAS  Google Scholar 

  14. Baird T, Campbell KC, Holliman PJ, Hoyle R, Stirling D, Williams BP (1996) J Chem Soc Faraday Trans 92:445

    Article  CAS  Google Scholar 

  15. Baird T, Denny PJ, Hoyle RW, McMonagle F, Stirling D, Tweedy J (1992) J Chem Soc Faraday Trans 88:3375

    Article  CAS  Google Scholar 

  16. Baird T, Campbell KC, Holliman PJ, Hoyle R, Stirling D, Williams BP (1995) J Chem Soc Faraday Trans 91:3219

    Article  CAS  Google Scholar 

  17. Baird T, Campbell KC, Holliman PJ, Hoyle RW, Huxam M, Stirling D, Williams BP, Morris M (1999) J Mater Chem 9:599

    Article  CAS  Google Scholar 

  18. Baird T, Campbell KC, Holliman PJ, Hoyle R, Noble G, Stirling D, Williams BP (2003) J Mater Chem 13:2341

    Article  CAS  Google Scholar 

  19. Polychronopoulou K, Fierro JLG, Efstathiou AM (2005) Appl Catal B Environ 57:125

    Article  CAS  Google Scholar 

  20. Polychronopoulou K, Galisteo FC, Granados ML, Fierro JLG, Bakas T, Efstathiou AM (2005) J Catal 236:205

    CAS  Google Scholar 

  21. Bandosz TJ (2002) J Coll Inter Sci 246:1

    Article  CAS  Google Scholar 

  22. Bagreev A, Rahman H, Bandosz TJ (2001) Carbon 39:1319

    Article  CAS  Google Scholar 

  23. Bandosz TJ (1999) carbon 37:483

    Article  CAS  Google Scholar 

  24. Takahashi A, Yang RT, Munson CL, Chinn D (2001) Langmuir 17:8405

    Article  CAS  Google Scholar 

  25. Takahashi A, Yang RT, Munson CL, Chinn D (2001) Ind Eng Chem Res 40:3979

    Article  CAS  Google Scholar 

  26. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2002) Energy Fuels 16:1463

    Article  CAS  Google Scholar 

  27. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2003) Micro Meso Mater 62:29

    Article  CAS  Google Scholar 

  28. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2004) Int J Environ Technol Manag 4:32

    CAS  Google Scholar 

  29. Xu XC, Song CS, Miller BG, Scaroni AW (2005) Fuel Proc Technol 86:1457

    Article  CAS  Google Scholar 

  30. Xu XC, Novochinskii II, Song CS (2005) Energy Fuels 19:2214

    Article  CAS  Google Scholar 

  31. Huang HY, Yang RT, D.Chinn, Munson CL (2003) Ind Eng Chem Res 42:2427

    Article  CAS  Google Scholar 

  32. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:301

    Article  Google Scholar 

  33. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  34. Reddy KM, Song CS (1996) Catal Lett 36:103

    Article  CAS  Google Scholar 

  35. Reddy KM, Song CS (1998) Stud Surf Sci Catal 117:291

    Article  CAS  Google Scholar 

  36. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  37. Wang X, Zhang Q, Yang S, Wang Y (2005) J Phys Chem B 109:23500

    Article  CAS  Google Scholar 

  38. Shao Y, Wang L, Zhang J, Anpo M (2005) J Phys Chem B 109:20835

    Article  CAS  Google Scholar 

  39. Wang X, Wang Y, Tang Q, Guo Q, Zhang Q, Wan H (2003) J Catal 217:457

    CAS  Google Scholar 

  40. Ma XL, Song CS (2006) Prepr Pap-Am Chem Soc, Div Fuel Chem 51(1):100

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Pennsylvania Energy Development Authority, Department of Environmental Protection, Pennsylvania State through Grant PG050021. The authors wish to thank Dr. Alan W Scaroni for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunshun Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Ma, X., Xu, X. et al. Mesoporous-molecular-sieve-supported Polymer Sorbents for Removing H2S from Hydrogen Gas Streams. Top Catal 49, 108–117 (2008). https://doi.org/10.1007/s11244-008-9072-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9072-5

Keywords

Navigation