Skip to main content

Advertisement

Log in

CO2 adsorption by polyamine-based protic ionic liquid-functionalized mesoporous silica: regenerability and influence of flue gas contaminants

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyamine-based protic ionic liquid (PILs)-functionalized mesoporous silica has drawn much attention due to its high CO2 adsorption rate, high CO2 adsorption capacity, and recyclability. However, the performance of these materials under realistic operating conditions and the influence of flue gas contaminants such as SOx, NOx, and water vapor remain unexplored. In this study, the effects of these flue gas contaminants on CO2 adsorption of PILs-functionalized SBA-15 are evaluated through breakthrough experiments. The results show that the CO2 adsorption capacity and capture rate of the hybrid sorbents are increased by about one-third in the presence of trace water vapor. This is attributed to additional CO2 capture pathways with amine groups that result from the humid environment. The additional pathway was further explained with FT-IR spectroscopy and DFT calculations, which reveal that in the presence of water vapor the CO2 molecules react with amine groups to form stable zwitterionic bicarbonate ions. On the other hand, the sorbents have strong resistance to SO2 and NO over the tested concentration range of 0–500 ppm, with limited impact on CO2 capture. After 8 cyclic adsorption/regeneration experiments, the CO2 adsorption capacities of the sorbents almost are constant when compared to the first cycle performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. IPCC (2005) IPCC special report on carbon dioxide capture and storage; intergovernmental panel on climate change. Cambridge Press, NY USA

    Google Scholar 

  2. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652

    CAS  Google Scholar 

  3. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654

    CAS  Google Scholar 

  4. Olajire AA (2017) Synthesis of bare and functionalized porous adsorbent materials for CO2 capture. Greenh Gas Sci Technol 7:399–459

    CAS  Google Scholar 

  5. Ben-Mansour R, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, Laoui T, Ali M (2016) Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review. Appl Energy 161:225–255

    CAS  Google Scholar 

  6. Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hua XJ, Wang X, Liu SH, Jiang LH (2017) Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol 227:359–372

    CAS  Google Scholar 

  7. Bhatta LKG, Subramanyam S, Chengala MD, Olivera S, Venkatesh K (2015) Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. J Clean Prod 103:171–196

    CAS  Google Scholar 

  8. Lin Y, Kong C, Zhang Q, Chen L (2017) Metal-organic frameworks for carbon dioxide capture and methane storage. Adv Energy Mater 7:1601296

    Google Scholar 

  9. Ren Y, Ding R, Yue H, Tang S, Liu C, Zhao J, Lin W, Liang B (2017) Amine-grafted mesoporous copper silicates as recyclable solid amine sorbents for post-combustion CO2 capture. Appl Energy 198:250–260

    CAS  Google Scholar 

  10. Hiremath V, Jadhav AH, Lee H, Kwon S, Seo JG (2016) Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica. Chem Eng J 287:602–617

    CAS  Google Scholar 

  11. Garip M, Gizli N (2020) Ionic liquid containing amine-based silica aerogels for CO2 capture by fixed bed adsorption. J Mol Liq 310:113227

    CAS  Google Scholar 

  12. Rezaei F, Jones CW (2014) Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture. 2. Multicomponent adsorption. Ind Eng Chem Res 53:12103–12110

    CAS  Google Scholar 

  13. Rezaei F, Jones CW (2013) Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture. 1. Single-component adsorption. Ind Eng Chem Res 52:12192–12201

    CAS  Google Scholar 

  14. Deng H, Yi H, Tang X, Liu H, Zhou X (2013) Interactive effect for simultaneous removal of SO2, NO, and CO2 in flue gas on ion exchanged zeolites. Ind Eng Chem Res 52:6778–6784

    CAS  Google Scholar 

  15. Dutcher B, Fan MH, Russell AG (2015) Amine-based CO2 capture technology development from the beginning of 2013-a review. ACS Appl Mater Interfaces 7:2137–2148

    CAS  Google Scholar 

  16. Khatri RA, Chuang SSC, Soong Y, Gray M (2006) Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuels 20:1514–1520

    CAS  Google Scholar 

  17. Gao E, Sun G, Zhang W, Bernards MT, He Y, Pan H, Shi Y (2020) Surface lattice oxygen activation via Zr4+ cations substituting on A2+ sites of MnCr2O4 forming ZrxMn1−xCr2O4 catalysts for enhanced NH3-SCR performance. Chem Eng J 380:122397

    CAS  Google Scholar 

  18. Fan Y, Rezaei F, Labreche Y, Lively RP, Koros WJ, Jones CW (2015) Stability of amine-based hollow fiber CO2 adsorbents in the presence of NO and SO2. Fuel 160:153–164

    CAS  Google Scholar 

  19. Liu Y, Ye Q, Shen M, Shi J, Chen J, Pan H, Shi Y (2011) Carbon dioxide capture by functionalized solid amine sorbents with simulated flue gas conditions. Environ Sci Technol 45:5710–5716

    CAS  Google Scholar 

  20. Li X, Zhang L, Zheng Y, Zheng C (2015) Effect of SO2 on CO2 absorption in flue gas by ionic liquid 1-ethyl-3-methylimidazolium acetate. Ind Eng Chem Res 54:8569–8578

    CAS  Google Scholar 

  21. Chen K, Shi G, Zhou X, Li H, Wang C (2016) Highly efficient nitric oxide capture by azole-based ionic liquids through multiple-site absorption. Angew Chem Int Ed Engl 55:14364–14368

    CAS  Google Scholar 

  22. Gelles T, Lawson S, Rownaghi AA, Rezaei F (2020) Recent advances in development of amine functionalized adsorbents for CO2 capture. Adsorption 26:5–50

    CAS  Google Scholar 

  23. Didas SA, Salcwa-Novak MA, Foo GS, Sievers C, Jones CW (2014) Effect of amine surface coverage on the Co-adsorption of CO2 and water: spectral deconvolution of adsorbed species. J Phys Chem Lett 5:4194–4200

    CAS  Google Scholar 

  24. Donaldson TL, Nguyen YN (1980) Carbon-dioxide reaction-kinetics and transport in aqueous amine membranes. Ind Eng Chem Res 19:260–266

    CAS  Google Scholar 

  25. Kortunov PV, Siskin M, Baugh LS, Calabro DC (2015) In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in aqueous systems: new insights on carbon capture reaction pathways. Energy Fuels 29:5919–5939

    CAS  Google Scholar 

  26. Zhang H, Goeppert A, Olah GA, Prakash GKS (2017) Remarkable effect of moisture on the CO2 adsorption of nano-silica supported linear and branched polyethylenimine. J CO2 Util 19:91–99

    CAS  Google Scholar 

  27. Zhang W, Gao E, Li Y, Bernards MT, He Y, Shi Y (2019) CO2 capture with polyamine-based protic ionic liquid functionalized mesoporous silica. J CO2 Util 34:606–615

    Google Scholar 

  28. Zhang W, Gao E, Li Y, Bernards MT, Li Y, Cao G, He Y, Shi Y (2019) Synergistic enhancement of CO2 adsorption capacity and kinetics in triethylenetetrammonium nitrate protic ionic liquid functionalized SBA-15. Energy Fuels 33:8967–8975

    Google Scholar 

  29. Weber JCMWJ (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Google Scholar 

  30. Burke K (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Google Scholar 

  31. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  32. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  33. Tzialla O, Kakosimos G, Athanasekou C, Galata E, Romanos G, Pilatos G, Zubeir L, Kroon M, Iliev B, Schubert T (2016) Porous carbons from ionic liquid precursors confined within nanoporous silicas. Microporous Mesoporous Mater 223:163–175

    CAS  Google Scholar 

  34. Cheng J, Li Y, Hu L, Liu J, Zhou J, Cen K (2018) CO2 absorption and diffusion in ionic liquid [P66614][Triz] modified molecular sieves SBA-15 with various pore lengths. Fuel Process Technol 172:216–224

    CAS  Google Scholar 

  35. Zhang G, Zhao P, Hao L, Xu Y (2018) Amine-modified SBA-15 (P): a promising adsorbent for CO2 capture. J CO2 Util 24:22–33

    CAS  Google Scholar 

  36. Dongyuan Zhao JF, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Google Scholar 

  37. Hung C-T, Yang C-F, Lin J-S, Huang S-J, Chang Y-C, Liu S-B (2017) Capture of carbon dioxide by polyamine-immobilized mesostructured silica: a solid-state NMR study. Microporous Mesoporous Mater 238:2–13

    CAS  Google Scholar 

  38. Monash P, Pugazhenthi G (2010) Investigation of equilibrium and kinetic parameters of methylene blue adsorption onto MCM-41, Korean. J Chem Eng 27:1184–1191

    CAS  Google Scholar 

  39. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Chichester, Wiley

    Google Scholar 

  40. Zhang W, Gao E, Li Y, Li Y, Cao G, He Y, Shi Y (2020) Nitrate doping for SO2 resistance enhancement of solid sorbents made from polyamine-based protic ionic liquid-functionalized mesoporous silica. ACS Sustain Chem Eng 8:8970–8976

    CAS  Google Scholar 

  41. Zhang W, Li Y, Li Y, Gao E, Cao G, Bernards MT, He Y, Shi Y (2020) Enhanced SO2 resistance of tetraethylenepentammonium nitrate protic ionic liquid-functionalized SBA-15 during CO2 capture from flue gas. Energy Fuels 34:8628–8634

    CAS  Google Scholar 

  42. Liu Q, Xiong B, Shi J, Tao M, He Y, Shi Y (2014) Enhanced tolerance to flue gas contaminants on carbon dioxide capture using amine-functionalized multiwalled carbon nanotubes. Energy Fuels 28:6494–6501

    CAS  Google Scholar 

  43. Robinson K, McCluskey A, Attalla MI (2011) An FTIR spectroscopic study on the effect of molecular structural variations on the CO2 absorption characteristics of heterocyclic amines. Chem Phys Chem 12:1088–1099

    CAS  Google Scholar 

  44. Etienne Garand TW, Goebbert Daniel J, Bergmann Risshu, Meijer Gerard, Neumark Daniel M, Asmis Knut R (2010) Infrared spectroscopy of hydrated bicarbonate anion clusters: HCO3(H2O)1–10. J Am Chem Soc 132:849–856

    Google Scholar 

  45. Richner G, Puxty G (2012) Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR. Ind Eng Chem Res 51:14317–14324

    CAS  Google Scholar 

  46. Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc 132:6312–6314

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant Numbers 21676245 and 51750110495) and the National Key Research and Development Program of China (Grant Number 2018YFC0213806) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, Y., Li, Y. et al. CO2 adsorption by polyamine-based protic ionic liquid-functionalized mesoporous silica: regenerability and influence of flue gas contaminants. J Mater Sci 56, 3024–3034 (2021). https://doi.org/10.1007/s10853-020-05451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05451-3

Navigation