Skip to main content
Log in

On the kinetics and mechanism of the conversion of Cr(CO)51-P-dppm) to Cr(CO)42-P,P′-dppm) (dppm = 1,2-diphenylphosphinomethane): an alternative hypothesis

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The data from a previously reported kinetic evaluation dealing with the conversion of Cr(CO)51-P-dppm) (1: dppm = 1,2-diphenylphosphinomethane) into the corresponding chelated complex Cr(CO)42-P,P′-dppm) (2), via CO loss, is re-evaluated. The conclusion is that the process is more likely to involve a rate-determining step that is first-order in [Cr(CO)51-P-dppm)], as opposed to the previously reported zero-order model as proposed. This implies CO loss from 1, by presumably either an I d or more likely a Dissociative (D: S N 1-type) mechanism, leads to 2. This hypothesis is compared and contrasted to reported data and comparisons are made to similar processes involving related Group VI metal carbonyl species.

Graphical Abstract

\( \mathop {{\text{Cr}}\left( {\text{CO}} \right)_{5} (\upkappa^{1} -P-dppm) + \Delta }\limits_{{\mathbf{1}}} \to \mathop {{\text{Cr}}\left( {\text{CO}} \right)_{4} (\upkappa^{2} -P,P^{{\prime }} {\text{-dppm}}) + {\text{CO}}}\limits_{{\mathbf{2}}} \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. An electronic version of the manuscript referred to in Ref. [32] is available at http://journals.tubitak.gov.tr/chem/abstract.htm?id=164.

  2. It should be noted that to firmly establish zero- versus first-order kinetics that data points covering at least two half-lives are typically required. The data reported [32] is lacking in this regard at both 373 and 378 K temperatures. However, the 383 K data set does cover (barely) two half-lives for calculated first-order decay (t ½ = 5.8 h; t = 12.1 h). It is intuitively unlikely that kinetic order would be variable over a single concentration of 1 and under the narrow temperature range studied [32]. Hence, our conclusions presented herein rely on the higher temperature data being representative of the half-life profile in the complete 373–383 K temperature range.

  3. In first-order processes, the expression ln(k y/k x) = E a ([1/T x ] − [1/T y ])R −1 can be used to determine E a [5, 6, 9]. We employed this equation using all three derived k values to estimate the error of our calculated E a value. In addition, the activity parameter A was found to be 1.2 (± 0.2) × 1020 via the expression ln(k) = ln(A) – E a/RT.

  4. The aim herein has been to present a plausible alternative mechanistic hypothesis, fully in-line with literature precedent [40] and the established concepts of metal carbonyl ligand substitution, that a first-order model is very likely operating during the conversion of 1 into 2. The seminal 1973 study by Connor, differing only in the solvent employed, strongly supports our view.

References

  1. Graddon DP (1968) An introduction to co-ordination chemistry, 2nd edn. Pergamon, Toronto (Chapter VI)

    Google Scholar 

  2. Basolo F, Johnson R (1964) Coordination chemistry. W. A. Benjamin, New York (Chapters 4–11)

    Google Scholar 

  3. Mackay KM, Mackay RA (1973) Introduction to modern inorganic chemistry, 2nd edn. Intext Educational, New York (Chapter 12.12)

    Google Scholar 

  4. Cotton FA, Wilkinson G (1966) Advanced Inorganic chemistry, 2nd edn. Wiley Interscience, New York (Chapter 27)

    Google Scholar 

  5. Shriver D, Weller M, Overton T, Rourke J, Armstrong F (2014) Inorganic chemistry, 6th edn. Freeman, New York (Chapter 22)

    Google Scholar 

  6. Housecroft CE, Sharpe AG (2008) Inorganic chemistry, 3rd edn. Pearson, Toronto (Chapter 19)

    Google Scholar 

  7. Bochmann M (1994) Organometallics 1: complexes with transition metal-carbon σ-bonds. Oxford, Oxford (Chapter 2)

    Google Scholar 

  8. Quagliano JV, Vallarino LM (1969) Coordination chemistry. D.C. Heath & Co., Lexington (Chapter 3)

    Google Scholar 

  9. Butler IS, Harrod JF (1989) Inorganic chemistry. Benjamin/Cummings, Redwood City (Chapter 22.4)

    Google Scholar 

  10. Elschenbroich C, Salzer A (1992) Organometallics, 2nd edn. VCH, Weinheim (Chapter 14)

    Google Scholar 

  11. Abel E (1990) J Organomet Chem 383:11

    Article  CAS  Google Scholar 

  12. Hermann WA (1990) J Organomet Chem 383:21

    Article  Google Scholar 

  13. Howell JAS, Burkinshaw PM (1983) Chem Rev 83:557

    Article  CAS  Google Scholar 

  14. Kaushik M, Singh A, Kumar M (2012) Eur J Chem 3:367

    Article  CAS  Google Scholar 

  15. Basolo F (1990) Polyhedron 9:1503

    Article  CAS  Google Scholar 

  16. Wilkins RG (1974) The study of kinetics and mechanism of reactions of transition metal complexes. Allyn & Bacon, Boston (Chapter 4)

    Google Scholar 

  17. Tobe ML (1976) Inorganic reaction mechanisms. Nelson, Southampton (Chapter 7)

    Google Scholar 

  18. Basolo F, Pearson RG (1967) Mechanisms of inorganic reactions, 2nd edn. Wiley, New York (Chapters 3 and 7)

    Google Scholar 

  19. Langford CH, Gray HB (1965) Ligand substitution processes. W. A. Benjamin, New York

    Google Scholar 

  20. Poë AJ (1988) Pure Appl Chem 60:1209

    Article  Google Scholar 

  21. Basolo F (1988) Pure Appl Chem 60:1193

    Article  CAS  Google Scholar 

  22. Chen L, Poë AJ (1995) Coord Chem Rev 143:265

    Article  CAS  Google Scholar 

  23. Basolo F (1985) Inorg Chim Acta 100:33

    Article  CAS  Google Scholar 

  24. Basolo F (1990) J Organomet Chem 383:579

    Article  CAS  Google Scholar 

  25. Brown DA (1967) Inorg Chim Acta Rev 1:35

    Article  CAS  Google Scholar 

  26. Cetini G, Gambino O (1963) Atti Accad Sci Torino 97:1189

    Google Scholar 

  27. Parjaro G, Calderazzo F, Ercoli R (1960) Gazz Chim Ital 90:1486

    Google Scholar 

  28. Werner H, Prinz R (1966) Chem Ber 99:3582

    Article  CAS  Google Scholar 

  29. Angelici RJ, Graham JR (1966) J Am Chem Soc 88:3658

    Article  CAS  Google Scholar 

  30. Graham JR, Angelici RJ (1967) Inorg Chem 6:2082

    Article  CAS  Google Scholar 

  31. Werner H (1966) J Organomet Chem 5:100

    Article  Google Scholar 

  32. Özkar S, Kayran C, Tekkaya A (1996) Turk J Chem 20:74

    Google Scholar 

  33. Chatt J, Watson HR (1961) J Chem Soc 4980

  34. Ogino H, Shimura M, Yamamoto N, Okubo N (1988) Inorg Chem 27:172

    Article  CAS  Google Scholar 

  35. Hoffmann R, Minkin VI, Carpenter BK (1996) Bull Soc Chim Fr 133:117

    CAS  Google Scholar 

  36. Hoffmann R, Minkin VI, Carpenter BK (1997) HYLE Int J Philosophy Chem 3:3

    Google Scholar 

  37. Connor JA, Skinner HA, Virmani Y (1972) J Chem Soc Faraday Trans 1754

  38. Claydon J, Greeves N, Warren S, Wothers P (2001) Organic chemistry. Oxford, Toronto, pp 1138–1140 (Chapter 42)

    Google Scholar 

  39. Gossage RA, Jenkins HA, Jones ND, Jones RC, Yates BF (2008) Dalton Trans 3115

  40. Connor JA, Day JP, Jones EM, McEwen GK (1973) J Chem Soc Dalton Trans 347

  41. Connor JA, Riley PI (1975) J Organomet Chem 94:55

    Article  CAS  Google Scholar 

  42. Connor JA, Hudson GA (1975) J Chem Soc Dalton Trans 1025

  43. Connor JA, Hudson GA (1974) J Organomet Chem 73:351

    Article  CAS  Google Scholar 

  44. Chan L, Lees AJ (1987) J Chem Soc Dalton Trans 513

  45. Grevels F-W, Kayran C, Özkar S (1994) Organometallics 13:2937

    Article  CAS  Google Scholar 

  46. Knebel WJ, Angelici RJ (1974) Inorg Chem 13:632

    Article  CAS  Google Scholar 

  47. Chan HSO, Hor TSA, Chiam CSM, Chong TC (1987) J Thermal Anal 32:1115

    Article  CAS  Google Scholar 

  48. Connor JA (1977) Top Curr Chem 71:71

    Article  CAS  Google Scholar 

  49. Lewis KE, Golden DM, Smith GP (1984) J Am Chem Soc 106:3905

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ryerson University. The author is indebted to Professor Daniel A. Foucher, Professor R. Stephen Wylie (both of Ryerson University) and Professor Emeritus John M. Roscoe (Acadia University) for a number of fruitful discussions with respect to various aspects of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Gossage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gossage, R.A. On the kinetics and mechanism of the conversion of Cr(CO)51-P-dppm) to Cr(CO)42-P,P′-dppm) (dppm = 1,2-diphenylphosphinomethane): an alternative hypothesis. Transit Met Chem 43, 39–43 (2018). https://doi.org/10.1007/s11243-017-0191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0191-3

Navigation