Skip to main content
Log in

Thermal degradation of the transition metal carbonyl complexes

I. TG and DSC of monodentate bis-(diphenylphosphino)-methane substituted carbonyl complexes of chromium, molybdenum and tungsten

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The thermal degradation of three monosubstituted hexacarbonyl complexes, M(CO)5(dppm) (whereM=Cr, Mo and W;dppm=Bis-(diphenylphosphino)-methane) has been studied using TG and DSC technics and their results reported. All the complexes facilely lose a carbonyl ligand (CO) below 200 °C. The kinetic analysis on the molybdenum complex suggested a first order dissociation pathway for this decarbonylation process. Dephosphination occurred at high temperature, followed by further decarbonylations. The enthalpy changes associated with the first decarbonylation are reported. The measured kinetic parameters are in good agreement with the literature values on similar systems obtained from solution studies.

Zusammenfassung

Der thermische Abbau von drei monosubstituierten Hexacarbonyl-Komplexen des Typs M(CO)5(dppm) (M=Cr, Mo oder W; dppm=Bis-(diphenylphosphino)-methan) wurden mittels TG und DSC untersucht. Alle diese Komplexe geben unterhalb 200 °C leicht einen Carbonylliganden (CO) ab. Die für den Molybdänkomplex ausgeführte kinetische Analyse deutet auf einen Dissoziationsverlauf erster Ordnung für diesen Decarbonylierungsprozeß hin. Bei hohen Temperaturen erfolgt Dephosphinierung, gefolgt von weiterer Decarbonylierung. Die sich auf den ersten Decarbonylierungsschritt beziehenden Enthalpieänderungen werden angegeben. Die gemessenen kinetischen Parameter stimmen gut mit Literaturwerten ähnlicher Systeme überein.

Резюме

Методом ТГ и ДСК изуче но термическое разложение трех моно замещенных гексакарбонильных к омплексов M(CO)5(dppm), гдеM=Cr, Мо и W;dppm=бисдифенилфосфино-метан. При температуре ниже 200° комплексы легко тер яют карбонильный лиганд. Кинетический анализ реакции разло жения молибденового компл екса указывает на первый порядок реакц ии декарбонилирован ия. Потеря фосфорорганическог о лиганда протекает при более высокой тем пературе, за которой с ледует дальнейшее декарбон илирование. Приведено изменение энтальпии, связанное с первичной реакцией декарбонил ирования. Полученные кинетиче ские параметры хорош о согласуются с литера турными значениями, найденными для подоб ных систем в растворе.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Masters, Homogeneous Transition-Metal Catalysis—A Gentle Art, Chapman and Hall, London 1981.

    Google Scholar 

  2. J. P. Collman and L. S. Hegedus, Principles and Applications of Organotransition-Metal Chemistry, University Science Books, California 1980.

    Google Scholar 

  3. J. S. Thayer, Adv. Organomet. Chem., 13 (1975) 1.

    Google Scholar 

  4. G. Wilkinson, F. G. A. Stone and E. W. Abel (eds), Comprehensive Organometallic Chemistry, Vol. 8, Pergamon Press 1982.

  5. K. Ziegler, Adv. Organomet. Chem., 6 (1968) 1.

    Google Scholar 

  6. G. W. Parshall, J. Mol. Catal., 4 (1978) 243.

    Article  Google Scholar 

  7. E. L. Muetterties, Science, 196 (1977) 839.

    Google Scholar 

  8. K. E. Lewis, G. M. Golden and G. P. Smith, J. Am. Chem. Soc., 106 (1984) 3905.

    Article  Google Scholar 

  9. C. E. Carraher, J. Chem. Ed., 11 (1981) 921.

    Google Scholar 

  10. M. Ryang, Organomet. Chem. Rev., A 5 (1970) 67.

    Google Scholar 

  11. W. A. Herrmann, J. Plank, M. L. Ziegler and K. Weidenhammer, J. Am. Chem. Soc., 101 (1979) 3133.

    Article  Google Scholar 

  12. R. D. Adams and T. S. A. Hor, Inorg. Chem., 23 (1984) 4723.

    Article  Google Scholar 

  13. R. W. Murray, Acc. Chem. Res., 13 (1980) 135.

    Article  Google Scholar 

  14. A. Heller, Acc. Chem. Res., 14 (1981) 154.

    Article  Google Scholar 

  15. A. J. Bard, J. Phys. Chem., 86 (1982) 172.

    Google Scholar 

  16. D. J. Darensbourg, Adv. Organomet. Chem., 21 (1982) 113 and references therein.

    Google Scholar 

  17. D. J. Darensbourg and B. J. Baldwin, J. Am. Chem. Soc., 101 (1979) 6447.

    Article  Google Scholar 

  18. R. L. Kump and L. J. Todd, J. Organomet. Chem., 194 (1980) C43.

    Article  Google Scholar 

  19. R. L. Kump and L. J. Todd, Inorg. Chem., 20 (1981) 3715.

    Article  Google Scholar 

  20. R. S. Botti and R. G. Schneggenburger, J. Thermal Anal., 2 (1970) 11.

    Google Scholar 

  21. Z. N. Prozorovskaya, S. S. Kalinina, L. N. Komissarova, K. I. Petrov and V. I. Spitsyn, Dokl. Akad. Nauk SSSR, 207 (1972) 359.

    Google Scholar 

  22. T. J. Cardwell, D. J. Desarro and P. C. Uden, Anal. Chim. Acta, 85 (1976) 415.

    Article  Google Scholar 

  23. G. D'Ascenzo and T. Bica, Thermochim. Acta, 18 (1977) 301.

    Article  Google Scholar 

  24. D. N. Sokolov and G. N. Nesterenko, Zh. Anal. Khim., 30 (1975) 2377.

    Google Scholar 

  25. A. Kito, M. Nakane and Y. Miyake, Osaka Kogyo Gijutsu Shikensho Kiho, 29 (1978) 231 and 238.

    Google Scholar 

  26. C. E. Carraher, Jr., Am. Chem. Soc. Div. Org. Coat. Plast. Chem. Pap., 35 (1975) 380.

    Google Scholar 

  27. A. M. Seyam, Dirasat, [Ser]: Nat. Sci. (Univ. Jordan), 7 (1980) 107.

    Google Scholar 

  28. R. G. Wilkins, The Study of Kinetics and Mechanisms of Reactions of Transition Metal Complexes, Allyn and Bacon, Boston 1974.

    Google Scholar 

  29. R. G. Wilkins, Acc. Chem. Res., 3 (1970) 408.

    Article  Google Scholar 

  30. T. H. Maugh, Science (Washington, D.C.) 220 (1983) 592.

    Google Scholar 

  31. J. D. Atwood and T. L. Brown, J. Am. Chem. Soc., 97 (1975) 3380.

    Article  Google Scholar 

  32. W. A. Bryce and K. U. Ingold, J. Chem. Phys., 23 (1956) 1968.

    Article  Google Scholar 

  33. J. H. Flynn and L. A. Wall, Polymer Letters, 4 (1966) 323.

    Article  Google Scholar 

  34. A. M. Bond and S. W. Carr, R. Colton and D. P. Kelly, Inorg. Chem., 22 (1983) 989 and references therein.

    Article  Google Scholar 

  35. R. L. Keiter and D. P. Shah, Inorg. Chem., 11 (1972) 191.

    Article  Google Scholar 

  36. R. L. Keiter and L. W. Cary, J. Am. Chem. Soc., 94 (1972) 9232.

    Article  Google Scholar 

  37. T. S. A. Hor, J. Organomet. Chem., submitted for publication.

  38. J. A. Connor, J. P. Day, E. M. Jones and G. K. McEwen, J. Chem. Soc., Dalton (1973) 347.

  39. J. R. Graham and R. J. Angelici, Inorg. Chem., 6 (1967) 2082.

    Article  Google Scholar 

  40. J. A. Connor and G. A. Hudson, J. Organomet. Chem., 73 (1974) 351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, H.S.O., Hor, T.S.A., Chiam, C.S.M. et al. Thermal degradation of the transition metal carbonyl complexes. Journal of Thermal Analysis 32, 1115–1126 (1987). https://doi.org/10.1007/BF01905166

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01905166

Keywords

Navigation