Skip to main content
Log in

Synthesis, spectral characterization, and structural investigation of mononuclear salen-type Cu(II) and Zn(II) complexes of a potentially octadentate N2O6 Schiff base ligand derived from binaphthol

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A new potentially octadentate N2O6 Schiff base ligand, H2L derived from the condensation of 2,2′-(1,1′-binaphthyl-2,2′-diylbis(oxy))dianiline and o-vanillin, along with its copper(II) and zinc(II) complexes, is synthesized and has been characterized by elemental analyses, IR, UV–vis, 1H and 13C NMR spectra, as well as conductivity measurements. H2L forms mononuclear complexes of 1:1 (metal:ligand) stoichiometry with Cu(II) and Zn(II), and conductivity data confirm the non-electrolyte nature of these complexes. The [ZnL] and [CuL] complexes display very different solid-state structures, as determined by X-ray crystallography. While the [ZnL] complex has a distorted octahedral geometry about the metal, the [CuL] complex displays a distorted square planar geometry about the copper, with long Cu–O(ether) distances of 2.667 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Cu–O bonds to neutral phenol are, on average, significantly longer than those to deprotonated phenol. The respective average values in the CSD (Version 5.32, November (2010)) are 2.399 and 1.910 Å.

  2. There are 671 instances of Cu(II)–ether O bonds, with distances ranging from 1.932 to 2.885 Å (mean = 2.338 Å, UQ = 2.535 Å). CSD Version 5.33, November (2011).

  3. There are 743 instances of Zn(II)–ether O bonds, with distances ranging from 1.966 to 2.839 Å (mean = 2.232 Å, UQ = 2.426 Å). CSD Version 5.33, November (2011).

References

  1. Chohan ZH, Sheazi SKA (1999) Synth React Inorg Met Org Chem 29:105–118

    Article  CAS  Google Scholar 

  2. Jayabalakrishnan C, Natarajan K (2001) Synth React Inorg Met Org Chem 31:983–995

    Article  CAS  Google Scholar 

  3. Jeeworth T, Wah HLK, Bhowon MG, Ghoorhoo D, Babooram K (2000) Synth React Inorg Met Org Chem 30:1023–1038

    Article  Google Scholar 

  4. Dharmaraj N, Viswanalhamurthi P, Natarajan K (2001) Transition Met Chem 26:105–109

    Article  CAS  Google Scholar 

  5. Colins CH, Lyne PM (1970) Microhiul methods. University Park Press, Baltimore, p 422

    Google Scholar 

  6. Chang S, Galvin JM, Jacobsen EN (1994) J Am Chem Soc 116:6937–6938

    Article  CAS  Google Scholar 

  7. Deng L, Jacobsen EN (1992) J Org Chem 57:4320–4323

    Article  CAS  Google Scholar 

  8. Yoon H, Burrows CJ (1988) J Am Chem Soc 110:4087–4089

    Article  CAS  Google Scholar 

  9. DiMauro EF, Kozlowski MC (2002) J Am Chem Soc 124:12668–12669

    Article  CAS  Google Scholar 

  10. Darensbourg DJ, Mackiewicz RM, Rodgers JL, Phelps AL (2004) Inorg Chem 43:1831–1833

    Article  CAS  Google Scholar 

  11. Darensbourg DJ, Mackiewicz RM, Phelps AL, Billodeaux DR (2004) Acc Chem Res 37:836–844

    Article  CAS  Google Scholar 

  12. Chapman JJ, Day CS, Welker ME (2001) Eur J Org Chem 12:2273–2282

    Article  Google Scholar 

  13. Temel H (2002) Trans Met Chem 27:609–612

    Article  CAS  Google Scholar 

  14. Boghaei DM, Mohebi S (2002) Tetrahedron 58:5357–5366

    Article  CAS  Google Scholar 

  15. Katsuki T (2003) Synlett 3:281–297

    Article  Google Scholar 

  16. Cozzi PG (2004) Chem Soc Rev 33:410–421

    Article  CAS  Google Scholar 

  17. Dubsky JV, Sokol A (1931) Collect Czech Chem Commun 3:548

    CAS  Google Scholar 

  18. Barbieri GA, Ferrari C (1936) Ricerca sci 7:390

    Google Scholar 

  19. Tsuchida R, Tsumaki T (1938) Bull Chem Soc Jpn 13:527–533

    Article  CAS  Google Scholar 

  20. Bailes RH, Calvin M (1947) J Am Chem Soc 69:1886–1893

    Article  CAS  Google Scholar 

  21. Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) J Am Chem Soc 112:2801–2803

    Article  CAS  Google Scholar 

  22. Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L (1991) J Am Chem Soc 113:7063–7064

    Article  CAS  Google Scholar 

  23. Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE, Furrow ME, Jacobsen EN (2002) J Am Chem Soc 124:1307–1315

    Article  CAS  Google Scholar 

  24. Jacobsen EN (2000) Acc Chem Res 33:421–431

    Article  CAS  Google Scholar 

  25. Keypour H, Shayesteh M, Sharifi-Rad A, Salehzadeh S, Khavasi H, Valencia L (2008) J Organomet Chem 693:3179–3187

    Article  CAS  Google Scholar 

  26. Yang C-P, Wei C-H (2001) Polymer 42:1837–1848

    Article  CAS  Google Scholar 

  27. Liaw D-J, Liaw B-Y (1998) Polymer 39:1597–1607

    Article  CAS  Google Scholar 

  28. Eastmond GC, Paprotny J (2004) Polymer 45:1073–1078

    Article  CAS  Google Scholar 

  29. Tsuzuki H, Tsukinoki T (2001) Green Chem 3:37–38

    Article  Google Scholar 

  30. SAINT, Bruker AXS Inc. (2005) Madison, Wisconsin

  31. Sheldrick GM (1996) SADABS. University of Göttingen, Germany

    Google Scholar 

  32. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Crystallogr 32:115–119

    Article  CAS  Google Scholar 

  33. Farrugia LJ (1999) J Appl Cryst 32:837–838

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  35. Nakamoto K (1977) Infrared and Raman spectra of inorganic and coordination compound, 3rd edn. Wiley Interscience, NY

    Google Scholar 

  36. Ali SA, Soiman AA, Aboaly MM, Ramandan RM (2002) J Coord Chem 55:1161–1170

    Article  CAS  Google Scholar 

  37. Ilhan S, Temel H, Kilic A, Tas E (2007) Transit Metal Chem 32:1012–1017

    Article  CAS  Google Scholar 

  38. Temel H, Ilhan S, Kilic A, Tas E (2008) J Coord Chem 61:1443–1454

    Article  CAS  Google Scholar 

  39. Suni V, Prathapachandra Kurup MR, Nethaji M (2007) Polyhedron 26:5203–5209

    Article  CAS  Google Scholar 

  40. Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, New York

    Google Scholar 

  41. Maki AH (1958) J Chem Phys 28:651–662

    Article  CAS  Google Scholar 

  42. Guidote AM Jr, Ando K-I, Terada K, Kurusu Y, Nagao H, Masuyama Y (2001) Inorg Chim Acta 324:203–211

    Article  CAS  Google Scholar 

  43. Geary W (1971) J Chem Rev 7:81–122

    CAS  Google Scholar 

  44. Tas E, Aslanoglu M, Kilic A, Kaplan O, Temel H (2006) J Chem Res (S) 4:242–245

    Article  Google Scholar 

  45. Ali MA, Mirza AH, Butcher RJ (2001) Polyhedron 20:1037–1043

    Article  CAS  Google Scholar 

  46. Yang L, Powell DR, Houser RP (2007) Dalton Trans 9:955–964

    Article  Google Scholar 

  47. Akitsu T, Einaga Y (2004) Acta Crystallogr Sect E 60:m436

    Article  CAS  Google Scholar 

  48. Akitsu T, Einaga Y (2004) Acta Crystallogr Sect E 60:m1552

    Article  CAS  Google Scholar 

  49. Akitsu T, Einaga Y (2004) Acta Crystallogr Sect E 60:m1555

    Article  CAS  Google Scholar 

  50. Akitsu T, Einaga Y (2004) Acta Crystallogr Sect E 60:m1602

    Article  Google Scholar 

  51. Akitsu T, Einaga Y (2004) Acta Crystallogr Sect C 60:m640

    Article  Google Scholar 

  52. Akitsu T, Einaga Y (2006) Polyhedron 25:1089–1095

    Article  CAS  Google Scholar 

  53. Yamada S (1999) Coord Chem Rev 537:190–192

    Google Scholar 

  54. Sakiyama H, Okawa H, Matsumoto N, Kida S (1990) J Chem Soc Dalton Trans 2935-2939

  55. Bosnich B (1968) J Am Chem Soc 90:627–632

    Article  CAS  Google Scholar 

  56. Okawa H, Nakamura M, Kida S (1986) Inorg Chim Acta 120:185–189

    Article  CAS  Google Scholar 

  57. Nishida Y, Kida S (1970) Bull Chem Soc Jpn 43:3814–3819

    Article  CAS  Google Scholar 

  58. Sakiyama H, Okawa H, Matsumoto N, Kida S (1991) Bull Chem Soc Jpn 64:2644–2647

    Article  CAS  Google Scholar 

  59. Ulusoy M, Karabiyik H, Kilincarslan R, Aygun M, Cetinkaya B, Garcia-Granda S (2008) Struct Chem 19:749

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Faculty of chemistry of Bu-Ali Sina University, National Foundation of elites (BMN) and Ministry of science, Research & Technology of Iran, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Keypour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2013_9728_MOESM1_ESM.doc

CCDCs 865429 and 865430 contain the supplementary crystallographic data of [ZnL]·CH3CN and [CuL]·2CHCl3 complexes respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keypour, H., Shayesteh, M., Golbedaghi, R. et al. Synthesis, spectral characterization, and structural investigation of mononuclear salen-type Cu(II) and Zn(II) complexes of a potentially octadentate N2O6 Schiff base ligand derived from binaphthol. Transition Met Chem 38, 611–616 (2013). https://doi.org/10.1007/s11243-013-9728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9728-2

Keywords

Navigation