Skip to main content
Log in

Validity of Capillary Imbibition Models in Paper-Based Microfluidic Applications

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Paper-based microfluidics has grown continuously over the last few years. One of the most important characteristics of paper-based microfluidic devices is the ability to pump fluids with the single action of capillary forces. However, fluid flow control in paper-based microfluidic devices has been studied primarily through empirical approaches; and as paper-based microfluidic devices have become more complex, more general and precise models of fluid flow are required. Particularly difficult to model are unsaturated flow conditions, which are critical to the overall performance of paper-based analytical devices, which may contain pre-adsorbed reagents such as indicator particles or antibodies. In this work we propose an objective test and a discussion on the suitability of different models (including a novel model derived here from LET-based models) that represent fluid imbibition dynamics in paper substrates. We reproduce experimental fluid fronts with the best parameter fits of the different models to show their actual capabilities to represent the moisture content function and present an analysis of propagation of uncertainties to obtain a final objective quantification of the quality of model fits. This objective analysis will endow the paper-based microfluidics community with objective information about modeling tools to improve the designs and performance of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. The set of physicochemical hypotheses of this model is described in the supporting information.

References

  • Bear, J., Cheng, A.H.D.: Modeling Groundwater Flow and Contaminant Transport, vol. 23. Springer, Dordrecht (2010)

    Book  Google Scholar 

  • Berli, C.L.A., Kler, P.A.: A quantitative model for lateral flow assays. Microfluid. Nanofluid. 20(7), 104 (2016)

    Article  Google Scholar 

  • Boltzmann, L.: Zur integration der diffusionsgleichung bei variabeln diffusionscoefficienten (to integrate the diffusion equation with variable diffusion coefficients). Ann. Phys. 289(13), 959–964 (1894)

    Article  Google Scholar 

  • Brooks, S.: Markov chain Monte Carlo method and its application. J. R. Stat. Soc. Ser. D (the Statistician) 47(1), 69–100 (1998)

    Google Scholar 

  • Brooks, R., Corey, T.: Hydraulic properties of porous media. Hydrol. Pap. Colo. State Univ. 24, 37 (1964)

    Google Scholar 

  • Brooks, S., Gelman, A., Jones, G., Meng, X.: Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  • Bruce, R., Klute, A.: The measurement of soil moisture diffusivity. Soil Sci. Soc. Am. J. 20(4), 458–462 (1956)

    Article  Google Scholar 

  • Chakravarti, N.: Isotonic median regression: a linear programming approach. Math. Oper. Res. 14(2), 303–308 (1989)

    Article  Google Scholar 

  • Cummins, B.M., Chinthapatla, R., Ligler, F.S., Walker, G.M.: Time-dependent model for fluid flow in porous materials with multiple pore sizes. Anal. Chem. 89(8), 4377–4381 (2017)

    Article  Google Scholar 

  • Das, S., Mitra, S.K.: Different regimes in vertical capillary filling. Phys. Rev. E 87(6), 063005 (2013)

    Article  Google Scholar 

  • Das, S., Waghmare, P.R., Mitra, S.K.: Early regimes of capillary filling. Phys. Rev. E 86(6), 067301 (2012)

    Article  Google Scholar 

  • Elizalde, E., Urteaga, R., Berli, C.L.A.: Precise capillary flow for paper-based viscometry. Microfluid. Nanofluid. 20(10), 1–8 (2016)

    Article  Google Scholar 

  • Espejo, A., Giráldez, J.V., Vanderlinden, K., Taguas, E., Pedrera, A.: A method for estimating soil water diffusivity from moisture profiles and its application across an experimental catchment. J. Hydrol. 516, 161–168 (2014)

    Article  Google Scholar 

  • Evangelides, C., Tzimopoulos, C., Arampatzis, G.: Flux–saturation relationship for unsaturated horizontal flow. Soil Sci. 170(9), 671–679 (2005)

    Article  Google Scholar 

  • Evangelides, C., Arampatzis, G., Tzimopoulos, C.: Estimation of soil moisture profile and diffusivity using simple laboratory procedures. Soil Sci. 175(3), 118–127 (2010)

    Article  Google Scholar 

  • Feinberg, J., Langtangen, H.P.: Chaospy: an open source tool for designing methods of uncertainty quantification. J. Comput. Sci. 11, 46–57 (2015)

    Article  Google Scholar 

  • Feldt, R.: BlackBoxOptim.jl (2019). https://github.com/robertfeldt/BlackBoxOptim.jl

  • Franck, N., Schaumburg, F., Kler, P.A., Urteaga, R.: Precise electroosmotic flow measurements on paper substrates. Electrophoresis 42(7–8), 975–982 (2021)

    Article  Google Scholar 

  • Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  Google Scholar 

  • Gamazo, P., Slooten, L.J., Carrera, J., Saaltink, M.W., Bea, S., Soler, J.: Proost: object-oriented approach to multiphase reactive transport modeling in porous media. J. Hydroinform. 18(2), 310–328 (2016)

    Article  Google Scholar 

  • Gerlero, G.S., Kler, P.A., Berli, C.L.A.: Fronts.jl (2020). https://github.com/gerlero/Fronts.jl

  • Gerlero, G.S., Márquez Damián, S., Schaumburg, F., Franck, N., Kler, P.A.: Numerical simulations of paper-based electrophoretic separations with open-source tools. Electrophoresis 42, 1543–1551 (2021)

    Article  Google Scholar 

  • Gratiet, L.L., Marelli, S., Sudret, B.: Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes. In: Ghanem R., Higdon D., Owhadi H. (eds) Handbook of Uncertainty Quantification. Springer, Cham, pp. 1–37 (2016)

  • Hassan, Su., Tariq, A., Noreen, Z., Donia, A., Zaidi, S.Z., Bokhari, H., Zhang, X.: Capillary-driven flow microfluidics combined with smartphone detection: an emerging tool for point-of-care diagnostics. Diagnostics 10(8), 509 (2020)

    Article  Google Scholar 

  • Hertaeg, M.J., Tabor, R.F., Berry, J.D., Garnier, G.: Radial wicking of biological fluids in paper. Langmuir 36(28), 8209–8217 (2020)

    Article  Google Scholar 

  • Hong, S., Kim, W.: Dynamics of water imbibition through paper channels with wax boundaries. Microfluid. Nanofluid. 19(4), 845–853 (2015)

    Article  Google Scholar 

  • Horgue, P., Soulaine, C., Franc, J., Guibert, R., Debenest, G.: An open-source toolbox for multiphase flow in porous media. Comput. Phys. Commun. 187, 217–226 (2015)

    Article  Google Scholar 

  • Kim, T.H., Hahn, Y.K., Kim, M.S.: Recent advances of fluid manipulation technologies in microfluidic paper-based analytical devices (\(\mu\)pads) toward multi-step assays. Micromachines 11(3), 269 (2020)

    Article  Google Scholar 

  • Lim, H., Jafry, A.T., Lee, J.: Fabrication, flow control, and applications of microfluidic paper-based analytical devices. Molecules 24(16), 2869 (2019)

    Article  Google Scholar 

  • Lomeland, F.: Overview of the LET family of versatile correlations for flow functions. In: Proceedings of the International Symposium of the Society of Core Analysts, pp. SCA2018–056 (2018)

  • Lomeland, F., Ebeltoft, E.: A new versatile capillary pressure correlation. In: Proceedings of the International Symposium of the Society of Core Analysts, vol 29, pp. SCA2008–08 (2008)

  • Lomeland, F., Ebeltoft, E., Thomas, W.H.: A new versatile relative permeability correlation. In: Proceedings of the International Symposium of the Society of Core Analysts, vol 112, pp. SCA2005–32 (2005)

  • Modha, S., Castro, C., Tsutsui, H.: Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors. Biosens. Bioelectron., 178, 113026 (2021)

  • Mora, M.F., Garcia, C.D., Schaumburg, F., Kler, P.A., Berli, C.L., Hashimoto, M., Carrilho, E.: Patterning and modeling three-dimensional microfluidic devices fabricated on a single sheet of paper. Anal. Chem. 91(13), 8298–8303 (2019)

    Article  Google Scholar 

  • Nagel, J., Sudret, B.: Spectral likelihood expansions for Bayesian inference. J. Comput. Phys. 309, 267–294 (2016)

    Article  Google Scholar 

  • Ozer, T., McMahon, C., Henry, C.S.: Advances in paper-based analytical devices. Annu. Rev. Anal. Chem. 13, 85–109 (2020)

    Article  Google Scholar 

  • Pan, B., Clarkson, C.R., Atwa, M., Tong, X., Debuhr, C., Ghanizadeh, A., Birss, V.I.: Spontaneous imbibition dynamics of liquids in partially-wet nanoporous media: experiment and theory. Transp. Porous Media 137(3), 555–574 (2021)

    Article  Google Scholar 

  • Perez-Cruz, A., Stiharu, I., Dominguez-Gonzalez, A.: Two-dimensional model of imbibition into paper-based networks using Richards’ equation. Microfluid. Nanofluid. 21(5), 98 (2017)

    Article  Google Scholar 

  • Philip, J.: Numerical solution of equations of the diffusion type with diffusivity concentration-dependent. Trans. Faraday Soc. 51, 885–892 (1955)

    Article  Google Scholar 

  • Rath, D., Toley, B.J.: Modeling-guided design of paper microfluidic networks: a case study of sequential fluid delivery. ACS Sens. 6, 91–99 (2020)

    Article  Google Scholar 

  • Rath, D., Sathishkumar, N., Toley, B.J.: Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices. Langmuir 34(30), 8758–8766 (2018)

    Article  Google Scholar 

  • Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1(5), 318–333 (1931)

    Article  Google Scholar 

  • Ruoff, A.L., Prince, D.L., Giddings, J.C., Stewart, G.H.: The diffusion analogy for solvent flow in paper. Kolloid Z. 166(2), 144–151 (1959)

    Article  Google Scholar 

  • Ruoff, A.L., Stewart, G.H., Shin, H.K., Giddings, J.C.: Diffusion of liquids in unsaturated paper. Kolloid Z. 173(1), 14 (1960)

    Article  Google Scholar 

  • Salentijn, G.I., Grajewski, M., Verpoorte, E.: Reinventing (bio) chemical analysis with paper. Anal. Chem. 90(23), 13815–13825 (2018)

    Article  Google Scholar 

  • Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis. The Primer, vol. 304. Wiley, Hoboken (2008)

    Google Scholar 

  • Salvatier, J., Wiecki, T., Fonnesbeck, C.: Probabilistic programming in python using pymc3. PeerJ Comput. Sci. 2, e55 (2016)

    Article  Google Scholar 

  • Santagata, T., Solimene, R., Aprea, G., Salatino, P.: Modelling and experimental characterization of unsaturated flow in absorbent and swelling porous media: material characterization. Transp. Porous Media 134(3), 725–753 (2020)

    Article  Google Scholar 

  • Schaumburg, F., Berli, C.L.A.: Assessing the rapid flow in multilayer paper-based microfluidic devices. Microfluid. Nanofluid. 23(8), 98 (2019)

    Article  Google Scholar 

  • Schaumburg, F., Kler, P.A., Berli, C.L.A.: Numerical prototyping of lateral flow biosensors. Sens. Actuators B Chem. 259, 1099–1107 (2018a)

    Article  Google Scholar 

  • Schaumburg, F., Urteaga, R., Kler, P.A., Berli, C.L.A.: Design keys for paper-based concentration gradient generators. J. Chromatogr. A 1561, 83–91 (2018b)

    Article  Google Scholar 

  • Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  Google Scholar 

  • Taylor, J.: Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements. University Science Books, New York (1997)

    Google Scholar 

  • Terzis, A., Yang, G., Zarikos, I., Elizalde, E., Weigand, B., Kalfas, A., Ding, X.: A temperature-based diagnostic approach for paper-based microfluidics. Microfluid. Nanofluid. 22(3), 1–6 (2018)

    Article  Google Scholar 

  • Tirapu-Azpiroz, J., Silva, A.F., Ferreira, M.E., Candela, W.F.L., Bryant, P.W., Ohta, R.L., Engel, M., Steiner, M.B.: Modeling fluid transport in two-dimensional paper networks. J. Micro/Nanolithogr. MEMS MOEMS 17(2), 025003 (2018)

    Article  Google Scholar 

  • Tumidajski, P.J., Chan, G.W.: Boltzmann–Matano analysis of chloride diffusion into blended cement concrete. J. Mater. Civ. Eng. 8(4), 195–200 (1996)

    Article  Google Scholar 

  • Urteaga, R., Elizalde, E., Berli, C.L.A.: Transverse solute dispersion in microfluidic paper-based analytical devices (\(\mu\)PADs). Analyst 143(10), 2259–2266 (2018)

    Article  Google Scholar 

  • Urteaga, R., Mercuri, M., Gimenez, R., Bellino, M.G., Berli, C.L.: Spontaneous water adsorption–desorption oscillations in mesoporous thin films. J. Colloid Interface Sci. 537, 407–413 (2019)

    Article  Google Scholar 

  • Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  • Vincent, O., Marguet, B., Stroock, A.D.: Imbibition triggered by capillary condensation in nanopores. Langmuir 33(7), 1655–1661 (2017)

    Article  Google Scholar 

  • Yamada, K., Shibata, H., Suzuki, K., Citterio, D.: Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17(7), 1206–1249 (2017)

    Article  Google Scholar 

  • Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12), 2210–2251 (2013)

    Article  Google Scholar 

Download references

Funding

This research was supported by CONICET, ANPCyT (Grant PICT 2018-02920), UTN (Grant PID ASUTNFE0005525) UNL(Grant CAI+D 50620190100114LI), Argentina and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Kler.

Ethics declarations

Conflict of interest

All authors declare the complete absence of financial/commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 14026 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerlero, G.S., Valdez, A.R., Urteaga, R. et al. Validity of Capillary Imbibition Models in Paper-Based Microfluidic Applications. Transp Porous Med 141, 359–378 (2022). https://doi.org/10.1007/s11242-021-01724-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01724-w

Keywords

Navigation