Skip to main content

Basic Paper-Based Microfluidics/Electronics Theory

  • Chapter
  • First Online:
Paper-Based Medical Diagnostic Devices

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 10))

Abstract

This chapter covers the fundamental theory related to paper-based microfluidics. A brief introduction of the field is presented followed by description of the physical and electrical properties of paper which play a key role in accurate prediction of flow rate. The theory related to fluid flow in paper is then described in detail and categorized into wet-out (Lucas-Washburn equation) and fully wetted (Darcy’s Law) flow for various boundary conditions, geometries, and external factors. Finally, the theory of electro-kinetics in paper is presented with electro-osmosis, electrophoresis, and electrowetting on a dielectric as potential techniques for fluid or particle manipulation in paper-based microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martinez, A.W., Phillips, S.T., Butte, M.J., Whitesides, G.M.: Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007). https://doi.org/10.1002/anie.200603817

    Article  Google Scholar 

  2. Martinez, A.W., Phillips, S.T., Wiley, B.J., Gupta, M., Whitesides, G.M.: FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip 8, 2146–2150 (2008). https://doi.org/10.1039/b811135a

  3. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006). https://doi.org/10.1038/nature05058

    Article  Google Scholar 

  4. Martinez, A.W., Phillips, S.T., Whitesides, G.M.: Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. 105, 19606–19611 (2008). https://doi.org/10.1073/pnas.0810903105

    Article  Google Scholar 

  5. Credou, J., Berthelot, T.: Cellulose: From biocompatible to bioactive material. J. Mater. Chem. B 2, 4767–4788 (2014). https://doi.org/10.1039/C4TB00431K

    Article  Google Scholar 

  6. Jafry, A.T., Lim, H., Kang, S.I., Suk, J.W., Lee, J.: A comparative study of paper-based microfluidic devices with respect to channel geometry. Colloids Surf. A: Physicochem. Eng. Aspects 492, 190–198 (2016). https://doi.org/10.1016/j.colsurfa.2015.12.033

    Article  Google Scholar 

  7. Cho, H.H., et al.: A paper-based platform for long-term deposition of nanoparticles with exceptional redispersibility, stability, and functionality. Part. Part. Sys. Charact. 36, 1800483 (2019). https://doi.org/10.1002/ppsc.201800483

    Article  Google Scholar 

  8. Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210–2251 (2013). https://doi.org/10.1039/C3LC50169H

    Article  Google Scholar 

  9. Jagadeesan, K.K., Kumar, S., Sumana, G.: Application of conducting paper for selective detection of troponin. Electrochem. Commun. 20, 71–74 (2012). https://doi.org/10.1016/j.elecom.2012.03.041

    Article  Google Scholar 

  10. Nery, E.W., Kubota, L.T.: Sensing approaches on paper-based devices: a review. Anal. Bioanal. Chem. 405, 7573–7595 (2013). https://doi.org/10.1007/s00216-013-6911-4

    Article  Google Scholar 

  11. Bracher, P.J., Gupta, M., Mack, E.T., Whitesides, G.M.: Heterogeneous films of ionotropic hydrogels fabricated from delivery templates of patterned paper. ACS Appl. Mater. Interfaces 1, 1807–1812 (2009). https://doi.org/10.1021/am900340m

    Article  Google Scholar 

  12. Kouisni, L., Rochefort, D.: Confocal microscopy study of polymer microcapsules for enzyme immobilization in paper substrates. J. Appl. Polym. Sci. 111, 1–10 (2009). https://doi.org/10.1002/app.28997

  13. Zhang, Y., Rochefort, D.: Activity, conformation and thermal stability of laccase and glucose oxidase in poly(ethyleneimine) microcapsules for immobilization in paper. Proc. Biochem. 46, 993–1000 (2011). https://doi.org/10.1016/j.procbio.2011.01.006

    Article  Google Scholar 

  14. Roberts, J.C.: Applications of paper chemistry. In: Roberts, J.C. (ed.) Paper Chemistry, pp. 1–8. Springer Netherlands, Dordrecht (1996). https://doi.org/10.1007/978-94-011-0605-4_1

  15. Quinn, M.J.: Chapter 11—Wildlife toxicity assessment for nitrocellulose. In: Williams, M.A., Reddy, G., Quinn, M.J., Johnson, M.S. (eds.) Wildlife Toxicity Assessments for Chemicals of Military Concern, pp. 217–226. Elsevier, Oxford, UK (2015). https://doi.org/10.1016/b978-0-12-800020-5.00011-9

  16. Arrastia, M., et al.: Development of a microfluidic-based assay on a novel nitrocellulose platform. Electrophoresis 36, 884–888 (2015). https://doi.org/10.1002/elps.201400421

    Article  Google Scholar 

  17. Li, X., Tian, J., Garnier, G., Shen, W.: Fabrication of paper-based microfluidic sensors by printing. Colloids Surf. B: Biointerfaces 76, 564–570 (2010). https://doi.org/10.1016/j.colsurfb.2009.12.023

    Article  Google Scholar 

  18. Al-Tamimi, M., Shen, W., Zeineddine, R., Tran, H., Garnier, G.: Validation of paper-based assay for rapid blood typing. Anal. Chem. 84, 1661–1668 (2012). https://doi.org/10.1021/ac202948t

    Article  Google Scholar 

  19. Martinez, A.W., et al.: Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time. Off-Site Diagn. Anal. Chem. 80, 3699–3707 (2008). https://doi.org/10.1021/ac800112r

    Article  Google Scholar 

  20. Zhong, Z.W., Wang, Z.P., Huang, G.X.D.: Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices. Microsys. Technol. 18, 649–659 (2012). https://doi.org/10.1007/s00542-012-1469-1

    Article  Google Scholar 

  21. Soum, V., et al.: Affordable fabrication of conductive electrodes and dielectric films for a paper-based digital microfluidic chip. Micromachines-Basel 10, 109 (2019). https://doi.org/10.3390/mi10020109

    Article  Google Scholar 

  22. Fang, L., Jiang, J., Wang, J., Deng, C.: Non-uniform capillary model for unidirectional fiber bundles considering pore size distribution. J. Reinf. Plastics Compos. 33, 1430–1440 (2014). https://doi.org/10.1177/0731684414533739

    Article  Google Scholar 

  23. Batch, G.L., Chen, Y.-T., Macoskot, C.W.: Capillary impregnation of aligned fibrous beds: Experiments and model. J. Reinf. Plastics Compos. 15, 1027–1051 (1996). https://doi.org/10.1177/073168449601501004

    Article  Google Scholar 

  24. Park, J., Shin, J.H., Park, J.-K.: Experimental analysis of porosity and permeability in pressed paper. Micromachines-Basel 7, 48 (2016)

    Article  Google Scholar 

  25. Dullien, F.A.L.: Pore structure. In: Dullien, F.A.L. (ed.) Porous Media (Second Edition). Academic Press, San Diego (1992). https://doi.org/10.1016/b978-0-12-223651-8.50007-9

  26. Nabovati, A., Llewellin, E.W., Sousa, A.C.M.: A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Compos. Part A Appl. Sci. Manuf. 40, 860–869 (2009). https://doi.org/10.1016/j.compositesa.2009.04.009

  27. Gebart, B.R.: Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 26, 1100–1133 (1992). https://doi.org/10.1177/002199839202600802

    Article  Google Scholar 

  28. Cai, J., Yu, B.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89, 251–263 (2011). https://doi.org/10.1007/s11242-011-9767-0

  29. Comiti, J., Renaud, M.: A new model for determining mean structure parameters of fixed beds from pressure drop measurements: Application to beds packed with parallelepipedal particles. Chem. Eng. Sci. 44, 1539–1545 (1989). https://doi.org/10.1016/0009-2509(89)80031-4

    Article  Google Scholar 

  30. Fraiwan, A., Lee, H., Choi, S.: A multianode paper-based microbial fuel cell: A potential power source for disposable biosensors. IEEE Sens. J. 14, 3385–3390 (2014). https://doi.org/10.1109/JSEN.2014.2332075

    Article  Google Scholar 

  31. Siegel, A.C., et al.: Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 20, 28–35 (2010). https://doi.org/10.1002/adfm.200901363

    Article  Google Scholar 

  32. Jafry, A.T., Lim, H., Sung, W.-K., Lee, J.: Flexible time–temperature indicator: A versatile platform for laminated paper-based analytical devices. Microfluid. Nanofluid. 21, 57 (2017). https://doi.org/10.1007/s10404-017-1883-x

    Article  Google Scholar 

  33. Jafry, A.T., et al.: Double-sided electrohydrodynamic jet printing of two-dimensional electrode array in paper-based digital microfluidics. Sens. Actuators B Chem. 282, 831–837 (2019). https://doi.org/10.1016/j.snb.2018.11.135

    Article  Google Scholar 

  34. Hu, L., et al.: Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6, 513–518 (2013). https://doi.org/10.1039/C2EE23635D

    Article  Google Scholar 

  35. Hu, L., et al.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. 106, 21490–21494 (2009). https://doi.org/10.1073/pnas.0908858106

    Article  Google Scholar 

  36. Tobjörk, D., Österbacka, R.: Paper electronics. Adv. Mater. 23, 1935–1961 (2011). https://doi.org/10.1002/adma.201004692

    Article  Google Scholar 

  37. Brodie, I., Dahlquist, J.A., Sher, A.: Measurement of charge transfer in electrographic processes. J. Appl. Phys. 39, 1618–1624 (1968). https://doi.org/10.1063/1.1656404

    Article  Google Scholar 

  38. Sirviö, P., Backfolk, K., Maldzius, R., Sidaravicius, J., Montrimas, E.: Dependence of paper surface and volume resistivity on electric field strength. J. Imaging Sci. Technol. 52, 30501 (2008). https://doi.org/10.2352/J.ImagingSci.Technol.(2008)52:3(030501)

    Article  Google Scholar 

  39. Morgan, V.T.: Effects of frequency, temperature, compression, and air pressure on the dielectric properties of a multilayer stack of dry kraft paper. IEEE Trans. Dielectr. Electr. Insul. 5, 125–131 (1998). https://doi.org/10.1109/94.660818

    Article  Google Scholar 

  40. Backfolk, K., et al.: Coating: Effect of base paper grammage and electrolyte content on electrical and dielectric properties of coated papers. Nord. Pulp Pap. Res. J. 25, 319–327 (2010). https://doi.org/10.3183/npprj-2010-25-03-p319-327

    Article  Google Scholar 

  41. Murphy, E.J.: The dependence of the conductivity of cellulose, silk and wool on their water content. J. Phys. Chem. Solids 16, 115–122 (1960). https://doi.org/10.1016/0022-3697(60)90081-0

    Article  Google Scholar 

  42. Nilsson, M., Strømme, M.: Electrodynamic investigations of conduction processes in humid microcrystalline cellulose tablets. J. Phys. Chem. B 109, 5450–5455 (2005). https://doi.org/10.1021/jp046991a

    Article  Google Scholar 

  43. Christie, J.H., Sylvander, S.R., Woodhead, I.M., Irie, K.: The dielectric properties of humid cellulose. J. Non-Cryst. Solids 341, 115–123 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.05.014

    Article  Google Scholar 

  44. Simula, S., et al.: Measurement of the dielectric properties of paper. J. Imaging Sci. Technol. 43, 472–477 (1999)

    Google Scholar 

  45. Kohman, G.T.: Cellulose as an insulating material. Ind. Eng. Chem. 31, 807–817 (1939). https://doi.org/10.1021/ie50355a005

    Article  Google Scholar 

  46. Fahmy, T.Y.A., Mobarak, F., El-Meligy, M.G.: Introducing undeinked old newsprint as a new resource of electrical purposes paper. Wood Sci. Technol. 42, 691–698 (2008). https://doi.org/10.1007/s00226-008-0180-y

    Article  Google Scholar 

  47. Martins, R., et al.: Write-erase and read paper memory transistor. Appl. Phys. Lett. 93, 203501 (2008). https://doi.org/10.1063/1.3030873

    Article  Google Scholar 

  48. Lim, H., Jafry, A.T., Lee, J.: Fabrication, flow control, and applications of microfluidic paper-based analytical devices. Molecules 24, 2869 (2019)

    Article  Google Scholar 

  49. Dang-Vu, T., Hupka, J.: Characterization of porous materials by capillary rise method. Physicochem. Probl. Miner. Process. 39, 47–65 (2005)

    Google Scholar 

  50. Munson, B.R., Okiishi, T.H., Huebsch, W.W., Rothmayer, A.P.: Fluid Mechanics. Wiley, Singapore (2013)

    Google Scholar 

  51. Washburn, E.W.: The Dynamics Of Capillary Flow. Phys. Rev. 17, 273–283 (1921). https://doi.org/10.1103/PhysRev.17.273

    Article  Google Scholar 

  52. Oliver, J.F.: Wetting and penetration of paper surfaces. Colloids Surf. Reprographic Technol. ACS Symp. Ser. 200, 435–453 (1982). https://doi.org/10.1021/bk-1982-0200.ch022

    Article  Google Scholar 

  53. Leelajariyakul, S., Noguchi, H., Kiatkamjornwong, S.: Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics. Prog. Org. Coat. 62, 145–161 (2008). https://doi.org/10.1016/j.porgcoat.2007.10.005

    Article  Google Scholar 

  54. Hong, S., Kim, W.: Dynamics of water imbibition through paper channels with wax boundaries. Microfluid. Nanofluid. 19, 845–853 (2015). https://doi.org/10.1007/s10404-015-1611-3

    Article  Google Scholar 

  55. Kiesvaara, J., Yliruusi, J.: The use of the Washburn method in determining the contact angles of lactose powder. Int. J. Pharm. 92, 81–88 (1993). https://doi.org/10.1016/0378-5173(93)90266-I

    Article  Google Scholar 

  56. Fries, N., Dreyer, M.: An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320, 259–263 (2008). https://doi.org/10.1016/j.jcis.2008.01.009

    Article  Google Scholar 

  57. Carrilho, E., Martinez, A.W., Whitesides, G.M.: Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009). https://doi.org/10.1021/ac901071p

    Article  Google Scholar 

  58. Lu, Y., Shi, W., Jiang, L., Qin, J., Lin, B.: Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30, 1497–1500 (2009). https://doi.org/10.1002/elps.200800563

    Article  Google Scholar 

  59. Dungchai, W., Chailapakul, O., Henry, C.S.: A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136, 77–82 (2011). https://doi.org/10.1039/c0an00406e

    Article  Google Scholar 

  60. Wang, S., et al.: Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 31, 212–218 (2012). https://doi.org/10.1016/j.bios.2011.10.019

    Article  Google Scholar 

  61. He, Y., Wu, W.-B., Fu, J.-Z.: Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Adv. 5, 2694–2701 (2015). https://doi.org/10.1039/C4RA12165A

    Article  Google Scholar 

  62. Nargang, T.M., et al.: Photolithographic structuring of soft, extremely foldable and autoclavable hydrophobic barriers in paper. Anal. Methods 10, 4028–4035 (2018). https://doi.org/10.1039/c8ay01010b

    Article  Google Scholar 

  63. Strong, E.B., et al.: Wax-printed fluidic time delays for automating multi-step assays in paper-based microfluidic devices (MicroPADs. Inventions 4, 20 (2019). https://doi.org/10.3390/inventions4010020

    Article  Google Scholar 

  64. Liu, Z., Hu, J., Zhao, Y., Qu, Z., Xu, F.: Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Appl. Therm. Eng. 88, 280–287 (2015). https://doi.org/10.1016/j.applthermaleng.2014.09.057

    Article  Google Scholar 

  65. Camplisson, C.K., Schilling, K.M., Pedrotti, W.L., Stone, H.A., Martinez, A.W.: Two-ply channels for faster wicking in paper-based microfluidic devices. Lab Chip 15, 4461–4466 (2015). https://doi.org/10.1039/C5LC01115A

    Article  Google Scholar 

  66. Castro, C., Rosillo, C., Tsutsui, H.: Characterizing effects of humidity and channel size on imbibition in paper-based microfluidic channels. Microfluid. Nanofluid. 21, 21 (2017). https://doi.org/10.1007/s10404-017-1860-4

    Article  Google Scholar 

  67. Fries, N., Odic, K., Conrath, M., Dreyer, M.: The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 321, 118–129 (2008). https://doi.org/10.1016/j.jcis.2008.01.019

    Article  Google Scholar 

  68. Jang, I., Kim, G., Song, S.: Mathematical model for mixing in a paper-based channel and applications to the generation of a concentration gradient. Int. J. Heat Mass Transf. 120, 830–837 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.078

    Article  Google Scholar 

  69. Irimia, D., Geba, D.A., Toner, M.: Universal microfluidic gradient generator. Anal. Chem. 78, 3472–3477 (2006). https://doi.org/10.1021/ac0518710

    Article  Google Scholar 

  70. Berthier, E., Beebe, D.J.: Gradient generation platforms: New directions for an established microfluidic technology. Lab Chip 14, 3241–3247 (2014). https://doi.org/10.1039/C4LC00448E

    Article  Google Scholar 

  71. Philip, J.R.: Flow in porous media. Ann. Rev. Fluid Mech. 2, 177–204 (1970). https://doi.org/10.1146/annurev.fl.02.010170.001141

    Article  Google Scholar 

  72. Darcy, H.P.G.: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. In: Dalamont, V. (ed.) Les Fontaines publiques de la ville de Dijon. Paris (1856)

    Google Scholar 

  73. Fu, E., Ramsey, S.A., Kauffman, P., Lutz, B., Yager, P.: Transport in two-dimensional paper networks. Microfluid. Nanofluid. 10, 29–35 (2011). https://doi.org/10.1007/s10404-010-0643-y

    Article  Google Scholar 

  74. Elizalde, E., Urteaga, R., Berli, C.L.A.: Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15, 2173–2180 (2015). https://doi.org/10.1039/C4LC01487A

    Article  Google Scholar 

  75. Mendez, S., et al.: Imbibition in porous membranes of complex shape: Quasi-stationary flow in thin rectangular segments. Langmuir 26, 1380–1385 (2010). https://doi.org/10.1021/la902470b

    Article  Google Scholar 

  76. Lyklema, J.: Fundamentals of Interface and Colloid Science. Soft Colloids, vol. 5. Elsevier, Cambridge, UK (2005)

    Google Scholar 

  77. Kirby, B.J.: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, New York, NY (2010)

    Book  Google Scholar 

  78. Bruus, H.: Theoretical Microfluidics, vol. 18. Oxford University Press, Oxford, UK (2008)

    Google Scholar 

  79. Sritharan, D., Smela, E.: Fabrication of a miniature paper-based electroosmotic actuator. Polymers 8, 400 (2016). https://doi.org/10.3390/polym8110400

  80. Rosenfeld, T., Bercovici, M.: 1000-fold sample focusing on paper-based microfluidic devices. Lab Chip 14, 4465–4474 (2014). https://doi.org/10.1039/C4LC00734D

    Article  Google Scholar 

  81. Niu, J.-C., et al.: Simultaneous pre-concentration and separation on simple paper-based analytical device for protein analysis. Anal. Bioanal. Chem. 410, 1689–1695 (2018). https://doi.org/10.1007/s00216-017-0809-5

    Article  Google Scholar 

  82. Yu, S., et al.: Isoelectric focusing on microfluidic paper-based chips. Anal. Bioanal. Chem. 411, 5415–5422 (2019). https://doi.org/10.1007/s00216-019-02008-5

    Article  Google Scholar 

  83. Hong, S., Kwak, R., Kim, W.: Paper-based flow fractionation system applicable to preconcentration and field-flow separation. Anal. Chem. 88, 1682–1687 (2016). https://doi.org/10.1021/acs.analchem.5b03682

    Article  Google Scholar 

  84. Lippmann, G.: Relations entre les phénomènes électriques et capillaires. Gauthier-Villars, Paris, France (1875)

    Google Scholar 

  85. Orejon, D., Sefiane, K., Shanahan, M.E.R.: Young-Lippmann equation revisited for nano-suspensions. Appl. Phys. Lett. 102, 201601 (2013). https://doi.org/10.1063/1.4807120

    Article  Google Scholar 

  86. Ko, H., et al.: Active digital microfluidic paper chips with inkjet-printed patterned electrodes. Adv. Mater. 26, 2335–2340 (2014). https://doi.org/10.1002/adma.201305014

    Article  Google Scholar 

  87. Fobel, R., Kirby, A.E., Ng, A.H.C., Farnood, R.R., Wheeler, A.R.: Paper microfluidics goes digital. Adv. Mater. 26, 2838–2843 (2014). https://doi.org/10.1002/adma.201305168

    Article  Google Scholar 

  88. Fobel, R., Fobel, C., Wheeler, A.R.: DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 102, 193513 (2013). https://doi.org/10.1063/1.4807118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jafry, A.T., Lim, H., Lee, J. (2021). Basic Paper-Based Microfluidics/Electronics Theory. In: Lee, J.H. (eds) Paper-Based Medical Diagnostic Devices. Bioanalysis, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-8723-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8723-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8722-1

  • Online ISBN: 978-981-15-8723-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics