Skip to main content
Log in

Poiseuille-Number-Based Kozeny–Carman Model for Computation of Pore Shape Factors on Arbitrary Cross Sections

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Porous media characterization is crucial to engineering projects where the pore shape has impact on performance gains. Membrane filters, sportswear fabrics, and tertiary oil recovery are a few examples. Kozeny–Carman (K–C) models are one of the most frequently used to understand, for instance, the relation between porosity, permeability, and other small-scale parameters. However, they have limitations, such as the inability to capture the correct dependence of permeability on porosity, the imperfect handling of the linear and nonlinear effects yielded by its fundamental quantities, and the insufficiency of geometrical parameters to predict the permeability correctly. In this paper, we cope with the problem of determining shape factors for generic geometries that represent sundry porous media configurations. Specifically, we propose a method that embeds the Poiseuille number into the classical K–C equation and returns a substitute shape factor term for its original counterpart. To the best of our knowledge, the existing formulations are unable to obtain shape factors for pores whose geometry is beyond the regular ones. We apply a Galerkin-based integral (GBI) method that determines shape factors for generic cross sections of pore channels. The approach is tested on straight capillaries with arbitrary cross sections subject to steady single-phase flow under the laminar regime. We show that shape factors for basic geometries known from experimental results are replicable exactly. Besides, we provide shape factors with precision up to 4 digits for a class of geometries of interest. As a way to demonstrate the applicability of the GBI approach, we report a case study that determines shape factors for 19 generic individual pore sections of a laboratory experiment involving flow rate measurements in an industrial arrangement of a water-agar packed bed. Porosity, flow behavior, and velocity distributions determined numerically achieve a narrow agreement with experimental values. The findings of this study provide parameters that can help to design new devices or mechanisms that depend on arbitrary pore shapes, as well as to characterize fluid flows in heterogeneous porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Any data or material will be available by the authors under request.

Code Availability

The code may be available by the authors under request.

Notes

  1. Moved to appendix due to its length.

  2. OpenCV (Open Source Computer Vision Library) is an open-source computer vision and machine learning software library freely available on https://opencv.org.

  3. Although (Berger and Zhou 2014) calls it Smirnov test only, we will maintain the most-known nomenclature.

Abbreviations

\(\alpha ,\beta\) :

Geometric parameters

\({\bar{\tau }}_w\) :

Mean shear stress [Pa]

\(\epsilon ,r,n\) :

Geometric parameters

\(\varGamma\) :

Duct’s boundary

\(\varGamma _p^{(i)}\) :

Individual pore boundary

\({\mathcal {P}}\) :

Distribution [dimensionless]

\(\mu\) :

Fluid viscosity [Pa s]

\(\varOmega _p^{(i)}\) :

Individual pore domain

\(\phi\) :

Porosity [dimensionless]

\(\phi _e\) :

Effective porosity [dimensionless]

\(\rho\) :

Density [\(\hbox {kg/m}^{3}\)]

\(\tau\) :

Tortuosity [dimensionless]

ab :

geometric parameters

\(A_c\) :

Cross-sectional area of the representative volume [\(\hbox {m}^{2}\)]

\(A_p\) :

Cross-sectional porous area [\(\hbox {m}^{2}\)]

\(A_s\) :

Surface area [\(\hbox {m}^{2}\)]

\(C_H\) :

Hazen’s coefficient

D :

Statistics D-value

d :

Particle size [mm]

\(D_h\) :

Dimensionless hydraulic diameter

\(d_h\) :

Hydraulic diameter [m]

dp/dz :

Pressure gradient [Pa/m]

f :

Fanning’s friction factor [dimensionless]

\(F_{KC}\) :

Kozeny–Carman shape factor [dimensionless]

\(F_{val}\) :

Shape factor [dimensionless]

K :

Absolute permeability [\(\upmu \hbox {m}^{2}\)]

L :

Virtual (straight) length [m]

l :

Characteristic length [m]

\(L_g\) :

True (geodesic) length [m]

P :

Perimeter [m]

Po :

Poiseuille number [dimensionless]

q :

Volume flow rate [\(\hbox {m}^{3}/\hbox {s}\)]

Re :

Reynolds number [dimensionless]

\(S_{Vgr}\) :

Grain’s specific surface area [\(\upmu \hbox {m}^{-1}\)]

u :

Local fluid velocity [m/s]

\(u_m\) :

Mean velocity [m/s]

V :

Velocity field [\(\hbox {cm s}^{-1}\)]

\(V_p\) :

Pore volume [\(\hbox {m}^{3}\)]

\(V_t\) :

Total volume [\(\hbox {m}^{3}\)]

\(V_{gr}\) :

Grain volume [\(\hbox {m}^{3}\)]

W :

Local dimensionless velocity

\(W/W_m\) :

Dimensionless velocity field

\(W_m\) :

Dimensionless mean velocity

XYZ :

Dimensionless coordinates

xyz :

Cartesian coordinates [m]

REV:

Representative elementary volume

References

  • Babadagli, T., Al-Salmi, S., et al.: A review of permeability-prediction methods for carbonate reservoirs using well-log data. SPE Reservoir Evaluat. Eng. 7(02), 75 (2004)

    Article  Google Scholar 

  • Bayles, G.A., Klinzing, G.E., Chiang, S.H.: Fractal mathematics applied to flow in porous systems. Part. Part. Syst Charact. 6(1–4), 168 (1989)

    Article  Google Scholar 

  • Bechtold, G., Ye, L.: Influence of fibre distribution on the transverse flow permeability in fibre bundles. Compos. Sci. Technol 63(14), 2069 (2003)

    Article  Google Scholar 

  • Berger, V.W., Zhou, Y.: Kolmogorov–smirnov test: overview. Statistics reference online, Wiley statsref (2014)

    Google Scholar 

  • Bourbiaux, B., Granet, S., Landereau, P., Noetinger, B., Sarda, S., Sabathier, J. et al.: In SPE annual technical conference and exhibition (Society of Petroleum Engineers, 1999)

  • Bourbié, T., Coussy, O., Zinszner, B., Junger, M.C.: Acoustics of porous media (1992)

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150 (1937)

    Google Scholar 

  • Carman, P.C.: Permeability of saturated sands, soils and clays. J. Agricul. Sci 29(2), 262 (1939)

    Article  Google Scholar 

  • Chen, X., Papathanasiou, T.D.: On the variability of the kozeny constant for saturated flow across unidirectional disordered fiber arrays. Composit Part A Appl. Sci. Manufact. 37(6), 836 (2006)

    Article  Google Scholar 

  • Civan, F.: Scale effect on porosity and permeability: Kinetics, model, and correlation. AIChE J. 47(2), 271 (2001)

    Article  Google Scholar 

  • Coats, K.H. et al.: in SPE symposium on reservoir simulation (Soc. Pet. Eng., 1989)

  • Costa, A.: Permeability-porosity relationship: A reexamination of the kozeny-carman equation based on a fractal pore-space geometry assumption. Geophysical research letters 33(2), (2006)

  • Davies, L., Dollimore, D.: Theoretical and experimental values for the parameter k of the kozeny-carman equation, as applied to sedimenting suspensions. J. Phys. D Appl. Phys. 13(11), 2013 (1980)

    Article  Google Scholar 

  • de Swaan, A., et al.: Influence of shape and skin of matrix-rock blocks on pressure transients in fractured reservoirs. SPE Format. Evaluat. 5(04), 344 (1990)

    Article  Google Scholar 

  • Drummond, J., Tahir, M.: Laminar viscous flow through regular arrays of parallel solid cylinders. Int. J. Multiph. Flow 10(5), 515 (1984)

    Article  Google Scholar 

  • Du Plessis, J.P., Woudberg, S.: Pore-scale derivation of the ergun equation to enhance its adaptability and generalization. Chem. Eng. Sci. 63(9), 2576 (2008)

    Article  Google Scholar 

  • Eidsath, A., Carbonell, R., Whitaker, S., Herrmann, L.: Dispersion in pulsed systems–iii: comparison between theory and experiments for packed beds. Chem. Eng. Sci. 38(11), 1803 (1983)

    Article  Google Scholar 

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89 (1952)

    Google Scholar 

  • Ferreira, L.P., Oliveira, R.D.S., Surmas, R., Silva, M.A.P., Peçanha, R.P.: Brinkman equation in reactive flow: Contribution of each term in carbonate acidification simulations. Adv. Water Resour. 144, 103696 (2020)

    Article  Google Scholar 

  • Fowler, J., Hertel, K.: Flow of a gas through porous media. J. Appl. Phy. 11(7), 496 (1940)

    Article  Google Scholar 

  • Gamrat, G., Favre-Marinet, M., Le Person, S.: Numerical study of heat transfer over banks of rods in small reynolds number cross-flow. Int. J. Heat Mass Transf. 51(3–4), 853 (2008)

    Article  Google Scholar 

  • Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am J. 77(5), 1461 (2013)

    Article  Google Scholar 

  • Happel, J., Brenner, H.: Low reynolds number hydrodynamics with special applications to particulate media. Springer, Netherlands (1986)

    Google Scholar 

  • Hazen, A.: Some physical properties of sands and gravels, with special reference to their use in filtration. Ann. Rep. Massachusetts State Board of Health 34, 539 (1892)

    Google Scholar 

  • Hazen, A.: Discussion of “dams on sand foundations’’ by a. c. koenig. Trans. Am. Soc. Civ. Eng 73, 199 (1911)

    Google Scholar 

  • Heijs, A.W., Lowe, C.P.: Numerical evaluation of the permeability and the kozeny constant for two types of porous media. Phys. Rev. E 51(5), 4346 (1995)

    Article  Google Scholar 

  • Helland, J., Ryazanov, A., Van Dijke, M.I.J.: In ECMOR XI-11th European Conference on the Mathematics of Oil Recovery (European Association of Geoscientists & Engineers, 2008), pp. cp–62

  • Hu, Y., Wang, Q., Zhao, J., Xie, S., Jiang, H.: A novel porous media permeability model based on fractal theory and ideal particle pore-space geometry assumption. Energies 13(3), 510 (2020)

    Article  Google Scholar 

  • Jian-Long, K., Xue-Ming, T., Hai-Yan, Z., Hang-Jun, L., Feng-Min, W., You-Sheng, X., Yong-Sheng, D.: Tortuosity for streamlines in porous media. Chinese Phys. B 21(4), 044701 (2012)

    Article  Google Scholar 

  • Karimian, S.M., Straatman, A.G.: Cfd study of the hydraulic and thermal behavior of spherical-void-phase porous materials. Int. J. Heat Fluid Flow 29(1), 292 (2008)

    Article  Google Scholar 

  • Kazemi, H., Merrill, L., Jr., Porterfield, K., Zeman, P., et al.: Numerical simulation of water-oil flow in naturally fractured reservoirs. Soc. Pet. Eng. J. 16(06), 317 (1976)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J..v.: Tortuous flow in porous media. Phys. Rev. E 54(1), 406 (1996)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Permeability and effective porosity of porous media. Phys Rev. E 56(3), 3319 (1997)

    Article  Google Scholar 

  • Kozeny, J.: Über kapillare leitung des wassers im boden (aufstieg versikerung und anwendung auf die bemasserung), Sitzungsber Akad. Wiss Wein Math. Naturwiss 136, 271 (1927)

    Google Scholar 

  • Kyan, C.P., Wasan, D.T., Kintner, R.C.: Flow of single-phase fluids through fibrous beds. Ind. Eng. Chem. Fundament. 9(4), 596 (1970)

    Article  Google Scholar 

  • Laminar fluid flow in concentric annular ducts of non-conventional cross-section applying gbi method 10

  • Léang, M., Pauchard, L., Lee, L.T., Giorgiutti-Dauphiné, F.: Imbibition on a porous layer: dynamical and mechanical characterization. Soft Matter 15(10), 2277 (2019)

    Article  Google Scholar 

  • Lei, M., Li, Y., Liu, Y., Ma, Y., Cheng, L., Hu, Y.: Effect of weaving structures on the water wicking-evaporating behavior of woven fabrics. Polymers 12(2), 422 (2020)

    Article  Google Scholar 

  • Li, J., Gu, Y.: Coalescence of oil-in-water emulsions in fibrous and granular beds. Sep. Purif. Technol 42(1), 1 (2005)

    Article  Google Scholar 

  • Lim, K., Aziz, K.: Matrix-fracture transfer shape factors for dual-porosity simulators. J. Pet. Sci. Eng. 13(3–4), 169 (1995)

    Article  Google Scholar 

  • Liu, H.L., Hwang, W.R.: Permeability prediction of fibrous porous media with complex 3d architectures. Composit Part A Appl. Sci. Manufact. 43(11), 2030 (2012)

    Article  Google Scholar 

  • Mathavan, G., Viraraghavan, T.: Coalescence/filtration of an oil-in-water emulsion in a peat bed. Water Res. 26(1), 91 (1992)

    Article  Google Scholar 

  • Matyka, M., Khalili, A., Koza, Z.: Tortuosity-porosity relation in porous media flow. Phys. Rev. E 78(2), 026306 (2008)

    Article  Google Scholar 

  • Mavko, G., Nur, A.: The effect of a percolation threshold in the kozeny-carman relation. Geophysics 62(5), 1480 (1997)

    Article  Google Scholar 

  • McGregor, R.: The effect of rate of flow on rate of dyeing ii-the mechanism of fluid flow through textiles and its significance in dyeing. J. Soc. Dyers Colourists 81(10), 429 (1965)

    Article  Google Scholar 

  • Nakayama, A., Kuwahara, F., Sano, Y.: Concept of equivalent diameter for heat and fluid flow in porous media. AIChE J. 53(3), 732 (2007)

    Article  Google Scholar 

  • Nooruddin, H.A., Hossain, M.E.: Modified kozeny-carmen correlation for enhanced hydraulic flow unit characterization. J. Pet. Sci. Eng. 80(1), 107 (2011)

    Article  Google Scholar 

  • Oliveira, G., Roque, W., Araújo, E., Diniz, A.A.R., Simões, T., Santos, M.: Competitive placement of oil perforation zones in hydraulic flow units from centrality measures. J. Pet. Sci. Eng. 147, 282 (2016)

    Article  Google Scholar 

  • Oliveira, G., Araújo, E., Santos, M., Roque, W.: Non-uniform injector/producer well pattern designs induced by morphology and anisotropy of flow units. J. Pet. Sci. Eng. 186, 106680 (2020)

    Article  Google Scholar 

  • Ozgumus, T., Mobedi, M., Ozkol, U.: Determination of kozeny constant based on porosity and pore to throat size ratio in porous medium with rectangular rods. Eng. Appl. Comput. Fluid Mech. 8(2), 308 (2014)

    Google Scholar 

  • Pacella, H.E., Eash, H.J., Frankowski, B.J., Federspiel, W.J.: Darcy permeability of hollow fiber bundles used in blood oxygenation devices. J. Membr. Sci. 382(1–2), 238 (2011)

    Article  Google Scholar 

  • Panda, M.N., Lake, L.W.: Estimation of single-phase permeability from parameters of particle-size distribution. AAPG Bulletin 78(7), 1028 (1994)

    Google Scholar 

  • Pape, H., Clauser, C., Iffland, J.: Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model pp. 603–619 (2000)

  • Peaceman, D., et al.: Convection in fractured reservoirs-the effect of matrix-fissure transfer on the instability of a density inversion in a vertical fissure. Soc. Pet. Eng. J. 16(05), 269 (1976)

    Article  Google Scholar 

  • Penuela, G., Civan, F., Hughes, R., Wiggins, M., et al.: In SPE Gas Technology Symposium (Soc. Pet. Eng., 2002)

  • Rodriguez, E., Giacomelli, F., Vazquez, A.: Permeability-porosity relationship in rtm for different fiberglass and natural reinforcements. J. Composit. Mater. 38(3), 259 (2004)

    Article  Google Scholar 

  • Rostami, P., Sharifi, M., Dejam, M.: Shape factor for regular and irregular matrix blocks in fractured porous media. Pet. Sci. 17(1), 136 (2020)

    Article  Google Scholar 

  • Sanaei, P., Cummings, L.J.: Membrane filtration with multiple fouling mechanisms. Phys. Rev Fluids 4(12), 124301 (2019)

    Article  Google Scholar 

  • Santos Junior, V., Farias Neto, S., Lima, A., Gomes, I., Galvao, I., Franco, C., do Carmo, J.: Heavy oil laminar flow in corrugated ducts: A numerical study using the galerkin-based integral method. Energies 13(6), 1363 (2020)

    Article  Google Scholar 

  • Sarda, S., Jeannin, L., Bourbiaux, B. et al.: In SPE reservoir simulation symposium (Society of Petroleum Engineers, 2001)

  • Shah, R., London, A.: Laminar flow forced convection in ducts, vol. 1. Elsevier, USA (1978)

    Google Scholar 

  • Shih, C.H., Lee, L.J.: Effect of fiber architecture on permeability in liquid composite molding. Polymer Composit. 19(5), 626 (1998)

    Article  Google Scholar 

  • Silin, D., Patzek, T.: Pore space morphology analysis using maximal inscribed spheres. Physica a Stat Mech Appl 371(2), 336 (2006)

    Article  Google Scholar 

  • Singh, M., Mohanty, K.: Permeability of spatially correlated porous media. Chem. Eng. Sci. 55(22), 5393 (2000)

    Article  Google Scholar 

  • Sobieski, W., Lipiński, S.: The analysis of the relations between porosity and tortuosity in granular beds, Technical Sciences/University of Warmia and Mazury in Olsztyn (2017)

  • Sobieski, W., Zhang, Q.: Sensitivity analysis of kozeny-carman and ergun equations. Techn. Sci. Univ. Warmia Mazury Olsztyn 17(3), 235 (2014)

    Google Scholar 

  • Srisutthiyakorn, N., Mavko, G.: In SEG Technical Program Expanded Abstracts 2017 (Society of Exploration Geophysicists, 2017), pp. 3811–3815

  • Srisutthiyakorn, N., Mavko, G..M.: What is the role of tortuosity in the kozeny-carman equation? Interpretation 5(1), SB57 (2017)

    Article  Google Scholar 

  • Sullivan, R., Hertel, K.: The permeability method for determining specific surface of fibers and powders. Adv. Colloid Sci. 1, 37 (1942)

    Google Scholar 

  • Teruel, F.E., et al.: Characterization of a porous medium employing numerical tools: Permeability and pressure-drop from darcy to turbulence. Int. J. Heat Mass Transf. 52(25–26), 5878 (2009)

    Article  Google Scholar 

  • Valdes-Parada, F.J., Ochoa-Tapia, J.A., Alvarez-Ramirez, J.: Validity of the permeability carman-kozeny equation: a volume averaging approach. Physica A Stat Mech Appl. 388(6), 789 (2009)

    Article  Google Scholar 

  • Vidal, D., Ridgway, C., Pianet, G., Schoelkopf, J., Roy, R., Bertrand, F.: Effect of particle size distribution and packing compression on fluid permeability as predicted by lattice-boltzmann simulations. Comput. Chem. Eng. 33(1), 256 (2009)

    Article  Google Scholar 

  • Vidales, A., Miranda, E.: Fractal porous media: relations between macroscopic properties. Chaos Solitons Fractals 7(9), 1365 (1996)

    Article  Google Scholar 

  • Warren, J., Root, P.J., et al.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3(03), 245 (1963)

    Article  Google Scholar 

  • Wei, W., Varavei, A., Sanaei, A., Sepehrnoori, K., et al.: Geochemical modeling of wormhole propagation in carbonate acidizing considering mineralogy heterogeneity. SPE J. 24(05), 2 (2019)

    Article  Google Scholar 

  • Wu, A..x., Chao, L.., Yin, S..h., Xue, Z..l., Xun, C..: Pore structure and liquid flow velocity distribution in water-saturated porous media probed by mri. Trans. Nonferrous Metals Soc. China 26(5), 1403 (2016)

    Article  Google Scholar 

  • Xu, P., Yu, B.: Developing a new form of permeability and kozeny-carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Res. 31(1), 74 (2008)

    Article  Google Scholar 

  • Yazdchi, K., Srivastava, S., Luding, S.: in PARTICLES II: proceedings of the II International Conference on Particle-Based Methods: fundamentals and applications (CIMNE, 2011), pp. 264–273

Download references

Acknowledgements

G.P.O. thanks Túlio Souza from Federal University of Paraíba for technical discussions and support concerning OpenCV image processing.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Find below the CRediT taxonomy for this manuscript: VASJ was involved in conceptualization. Methodology, formal analysis and investigation, writing—original draft preparation, and supervision. AFSJ helped in resources. TAS contributed to formal analysis and investigation, resources. GPO was involved in formal analysis and investigation, resources, writing—original draft preparation, and writing—review and editing.

Corresponding author

Correspondence to Gustavo P. Oliveira.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Overview on Mathematical Models Derived from Kozeny–Carman’s Equation

See Tables 3, 4 and 5.

Table 3 A class of modified Kozeny–Carman equations proposed for different porous media applications. Adapted from Xu and Yu (2008)
Table 4 Multiple definitions for shape factor found in the literature over the last 60 years
Table 5 Literature studies on the determination of Kozeny’s constant. In the second column, T, E, and C stand for “Theoretical,” “Experimental,” and “Computational,” in this order. Adapted from Ozgumus et al. (2014)

1.2 Shape Factors for Geometries with Arbitrary Cross-Section

See Table 6.

Table 6 Shape factors computed from \(F_{val}\) expression for a class of geometries of interest with arbitrary cross sections. Compiled from Shah and London (1978)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Júnior, V.A.S., Júnior, A.F.S., Simões, T.A. et al. Poiseuille-Number-Based Kozeny–Carman Model for Computation of Pore Shape Factors on Arbitrary Cross Sections. Transp Porous Med 138, 99–131 (2021). https://doi.org/10.1007/s11242-021-01592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01592-4

Keywords

Navigation