Skip to main content
Log in

Sensitivity and Uncertainty Analysis for Parameterization of Multiphase Flow Models

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The long-standing question on the adequate description of multiphase flow in porous media may be ultimately decided based on the ability to estimate model parameters with sufficient accuracy that make the models distinguishable. Since the most-common Darcy scale multiphase flow models all use a somewhat phenomenological relative permeability or resistance factor formulation, the key question is what the associated uncertainty really is when derived from flow experiments by inverse modeling. In this work, a recently developed workflow for systematic assessment of uncertainty was used to analyze the impact of the choice of relative permeability models and associated uncertainty. In an exemplary fashion, the Corey and LET relative permeability parameterizations were compared. The choice of Corey and LET models in the inverse modeling workflows showed differences in the derived relative permeability relations. The Corey parameterization is found to be more restrictive and imposed additional constraints on parameters. For example, varying the connate water saturation and residual oil saturation did not improve the match with experimental data. The pressure drop, saturation profiles and the capillary pressure–saturation relationship constrained the solution and imposing additional constraints on, e.g., residual oil saturation has very little impact on the result. In contrast, the LET function provided more degrees of freedom in order to accommodate the shape of the relative permeability curves. The findings also suggested that both Corey and LET models may not necessarily provide optimum parameterizations of the experimental data. The cross-correlations of fit parameters and non-Gaussian residuals indicated that we were still dealing with a phenomenological parameterization that is not yet the fully adequate description of the data. This may be the starting point for a comparison of different flow models beyond the uncertainty imposed by the choice of model parameterizations. Future work is aimed at assessing whether better choices in interpretation workflows and optimized experimental workflows can minimize these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Code availability

The Python scripts for the inverse modeling are available upon request. The two-phase flow modeling code is proprietary and cannot be shared. However, any two-phase Darcy flow simulator is equivalent and can be used instead.

Abbreviations

\(\phi\) :

Porosity (dimensionless)

\(K\) :

Permeability (\({\upmu} {\rm m}^{2} = mD\))

\(k_{r}\) :

Relative permeability (dimensionless)

\(k_{r,w}\) :

Relative permeability for the wetting phase

\(k_{r,n}\) :

Relative permeability for the non-wetting phase (dimensionless)

\(k_{r,\alpha }^{0}\) :

Endpoint saturation for phase \(\alpha\) at respective irreducible saturation

\(p_{c}\) :

Capillary pressure (bar)

\(S_{w}\) :

Wetting (water) phase saturation (dimensionless)

\(S_{w,c}\) :

Connate water saturation (irreducible wetting phase saturation)

\(S_{o,r}\) :

Residual oil saturation (irreducible non-wetting phase saturation)

\(S_{red}\) :

Reduced or mobile saturation

PV:

Pore volume

\(p\) :

Pressure (bar)

\({\Delta }p\) :

Pressure drop (bar)

\(\mu\) :

Viscosity (mPa·s)

\(x\) :

Position long the core (cm)

s \(v_{\alpha }\) :

Volumetric flux of phase \(\alpha\) in cm3/s

\(f_{w}\) :

Fractional flow (dimensionless)

\(n_{w} , n_{n}\) :

Parameters of Corey relative permeability model (power law exponents of wetting and non-wetting phases, dimensionless)

\(L_{\alpha }^{\beta } ,E_{\alpha }^{\beta } ,T_{\alpha }^{\beta }\) :

Parameters of LET relative permeability model (dimensionless)

\(a_{\alpha } , c_{\alpha }\) :

Parameters of the capillary pressure model (\(a_{\alpha }\) dimensionless, \(c_{\alpha }\) in bar)

\(\chi^{2}\) :

Sum of squared errors between experimental data and model output

ε i :

Error (standard deviation) of an experimental data point

\(\delta\) :

Standard deviation of a parameter

References

  • Alhammadi, A. M., Gao, Y., Akai, T., Blunt, M. J., Bijeljic, B.: Pore-scale imaging and determination of relative permeability and capillary pressure in a mixed-wet carbonate reservoir rock at subsurface conditions. Presented at the 2019 annual conference of the Society of Core Analysts held in Pau, France, August 26–30 (2019)

  • Alpak, F.A., Jennings, J.W.: Adjoint method acceleration protocols for model maturation to update static models with time-lapse reservoir surveillance data. J. Petrol. Sci. Eng. 190, 107046 (2020)

    Article  Google Scholar 

  • Alpak, F. O., Lake, L. W., Embid, S. M.: Validation of a modified Carman-Kozeny equation to model two-phase relative permeabilities. In: Proceedings of the 1999 SPE Annual Technical Conference and Exhibition held in Houston, Texas, 3–6 October 1999. Paper SPE 56479 (1999)

  • Alpak, F.O., Berg, S., Zacharoudiou, I.: Prediction of fluid topology and relative permeability in imbibition in sandstone rock by direct numerical simulation. Adv. Water Resour. 122, 49–59 (2018)

    Article  Google Scholar 

  • Alpak, F.O., Zacharoudiou, I., Berg, S., Dietderich, J., Saxena, N.: Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice boltzmann method on general-purpose graphics processing units. Comput. Geosci. 23, 849–880 (2019)

    Article  Google Scholar 

  • Anderson, W.G.: Wettability literature survey Part 5: the effects of wettability on relative permeability. J. Petrol. Technol. 39(11), 1453–1468 (1987)

    Article  Google Scholar 

  • Armstrong, R.T., McClure, J.E., Berrill, M.A., Rücker, M., Schlüter, S., Berg, S.: Beyond Darcy’s law: the role of phase topology and ganglion dynamics for two fluid flow. Phys. Rev. E 94, 043113 (2016)

    Article  Google Scholar 

  • Ayub, M., Bentsen, R.G.: Experimental testing of interfacial coupling in two-phase flow in porous media. Petrol. Sci. Technol. 23, 863–897 (2005)

    Article  Google Scholar 

  • Bachmat, Y., Bear, J.: On the concept and size of a representative elementary volume (Rev). In: Bear J., Corapcioglu M.Y. (eds) Advances in transport phenomena in porous media. NATO ASI Series (Series E: Applied Sciences), vol 128. Springer, Dordrecht. Doi:https://doi.org/10.1007/978-94-009-3625-6_1(1987)

  • Bear, J.: Two-liquid flows in porous media. Adv. Hydrosci. 6, 141–252 (1970)

    Article  Google Scholar 

  • Bear, J.: Dynamics of fluids in porous media. American Elsevier, New York (1972)

    Google Scholar 

  • Bear, J., Nitao, J.J.: On equilibrium and primary variables in transport in porous media. Transp. Porous Media 18, 151–184 (1995)

    Article  Google Scholar 

  • Bear, J., Braester, C., Menier, P.C.: Effective and relative permeabilities of anisotropic porous media. Transp. Porous Media 2, 301–316 (1987)

    Google Scholar 

  • Bear, J., Ryzhik, V., Braester, C., Entov, V.: On the movement of an LNAPL lens on the water table. Transp. Porous Media 25, 283–311 (1996)

    Article  Google Scholar 

  • Bentsen, R.G.: Effect of neglecting interfacial coupling when using vertical flow experiments to determine relative permeability. J. Petrol. Sci. Eng. 48, 81–93 (2005)

    Article  Google Scholar 

  • Berg, S., Ott, H.: Stability of CO2-brine immiscible displacement. Int. J. Greenhouse Gas Control 11, 188–203 (2012)

    Article  Google Scholar 

  • Berg, S., van Wunnik, J.: Shear rate determination from pore scale flow fields. Transp. Porous Media 117(2), 229–246 (2017)

    Article  Google Scholar 

  • Berg, S., Cense, A.W., Hofman, J.P., Smits, R.M.M.: Two-phase flow in porous media with slip boundary condition. Transp. Porous Media 74(3), 275–292 (2008)

    Article  Google Scholar 

  • Berg, S., Oedai, S., Ott, H.: Displacement and mass transfer between saturated and unsaturated CO2-brine systems in sandstone. Int. J. Greenhouse Gas Control 12, 478–492 (2013)

    Article  Google Scholar 

  • Berg, S., Unsal, E., Dijk, H.: Non-uniqueness and uncertainty quantification of relative permeability measurements by inverse modelling. Comput, GeoTech (2020)

    Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Brooks, S.: Markov chain Monte Carlo method and its application. J. R. Stat. Soc. D 47, 69–100 (1998)

    Article  Google Scholar 

  • Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Hydrology Papers, No. 3, Colorado State U., Fort Collins, Colorado (1964)

  • Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacements in sands. Trans. AIME 146, 107–116 (1942)

    Article  Google Scholar 

  • Bui, M., et al.: Cabon capture and storage (CCS): the way forward. Energy Environ. Sci. 11(5), 1062–1176 (2018)

    Article  Google Scholar 

  • Chen, Z.G.A., Ruth, D.W.: Centrifuge capillary pressure data reduction with a modified forbes method. J. Petrol. Sci. Eng. 9, 303–312 (1993)

    Article  Google Scholar 

  • Corey, A.T.: The interrelation between gas and oil relative permeabilities. Prod. Monthly. 19(1), 38–41 (1954)

    Google Scholar 

  • Cremon, M.A., Christie, M.A., Gerritsen, M.G.: Monte Carlo simulation for uncertainty quantification in reservoir simulation: a convergence study. J. Petrol. Sci. Eng. 190 (2020)

  • Dake, L.P.: Fundamentals of reservoir engineering. Elsevier, Amsterdam (1978)

    Google Scholar 

  • Dane, J., Vrugt, J.A., Unsal, E.: Soil hydraulic functions determined from measurements of air permeability, capillary modeling, and high‐dimensional parameter estimation. Vadose Zone J., 10 (2011)

  • Darcy, H.: Les fontaines publiques de la ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  • Das, D.B., Mirzaei, M., Widdows, N.: Non-uniqueness in capillary pressure-saturation-relative permeability relationships for two-phase flow in porous media: interplay between intensity and distribution of random micro-heterogeneities. Chem. Eng. Sci. 61, 6786–6803 (2006)

    Article  Google Scholar 

  • Dobson, P., Fursov, I., Lord, G., Ottobre, M.: Reversible and non-reversible Markov chain Monte Carlo algorithms for reservoir simulation problems. Comput. Geosci. 24, 1301–1313 (2020)

    Article  Google Scholar 

  • Doster, F., Zegeling, P.A., Hilfer, R.: Numerical solutions of a generalized theory for macroscopic capillarity. Phys. Rev. E 81, 036307 (2010)

    Article  Google Scholar 

  • Dullien, F.A.L.: Porous media fluid transport and pore structure. Academic press, New York (1992)

    Google Scholar 

  • Element, D. J., Goodyear, S. G.: New coreflood simulator based on independent treatment of in-situ saturation and pressure data. International Symposium of the Society of Core Analysist 2002, paper SCA2002–07.

  • Fadili, A., Ababou, R.: Dual homogenization of immiscible steady two-phase flows in random porous media. Water Resour. Res. 40, W01513 (2004)

    Article  Google Scholar 

  • Foreman-Mackey, D., Hogg, D. W., Lang, D., Goodman, J.: emcee: the MCMC Hammer, [astro-ph.IM], DOI:https://doi.org/10.1086/670067, (2012)

  • Freitas, C.: The issue of numerical uncertainty. Appl. Math. Model. 26, 237–248 (2002)

    Article  Google Scholar 

  • Gharbia, I.B., Dabaghi, J., Martin, V., Vohralik, M.: A posteriori error estimates for a compositional two-phase flow with nonlinear complementary constraints. Comput. Geosci. 24, 1031–1055 (2020)

    Article  Google Scholar 

  • Gray, W. G., Miller, C. T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 8. Interf. common. Curve Dyn. Adv. Water Resour. 33(12), 1427–1443, 2010.

  • Gray, W.G., Miller, C.T.: Introduction to the thermodynamically constrained averaging theory for porous medium systems. Springer, Heidelberg (2014)

    Book  Google Scholar 

  • Gupta, R., Maloney, D.R.: Intercept method: a novel technique to correct steady-state relative permeability data for capillary end effects. SPE J. 19(02), 316–330 (2016)

    Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: High velocity flow in porous media. Transp. Porous Media 2, 512–531 (1987)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: Toward an improved description of the physics of two-phase flow. Adv. Water Resour. 16, 53–67 (1993)

    Article  Google Scholar 

  • Hogg, D. W., Bovy, J., Lang, D.: Data analysis recipes: fitting a model to data. (2010)

  • Huang, D.D., Honarpour, M.M.: Capillary end effects in coreflood calculations. J. Petrol. Sci. Eng. 19, 103–117 (1998)

    Article  Google Scholar 

  • Jenei, B.: Numerical modelling and automated history matching in SCAL data for improved data quality, Master Thesis, University of Leoben, Austria (2017)

  • Johnson, E.F., Bossler, D.P., Naumann, V.O.: Calculation of relative permeability from displacement experiments. Trans. AIME 216, 370–372 (1959)

    Article  Google Scholar 

  • Khait, M., Voskov, D.: Integrated framework for modelling of thermal-compositional multiphase flow in porous media. In: SPE reservoir simulation conference, 10–11 April 2019, Galveston, Texas, USA, number SPE-193932 (2019)

  • Kondratenko, E.V., Mul, G., Baltrusaitis, J., Larrazabal, G.O., Perez-Ramirez, J.: Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013)

    Article  Google Scholar 

  • Krause, M., Krevor, S., Benson, S.M.: A procedure for the accurate determination of sub-core scale permeability distribution with error quantification. Transp. Porous Media 98, 565–588 (2013)

    Article  Google Scholar 

  • Lake, L.W.: Enhanced oil recovery. Prentice Hall, New Jersey (1984)

    Google Scholar 

  • Lenormand, R., Lorentzen, K., Maas, J. G., Ruth, D.: Comparison of four numerical simulators for SCAL experiments. International Symposium of the Society of Core Analysts held in Snowmass, Colorado, USA, 21–26 August 2016, paper SCA2016–006 (2016)

  • Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2(2), 164–168 (1944)

    Article  Google Scholar 

  • LeVeque, R.J.: Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich, Birkhäuser (1990)

    Book  Google Scholar 

  • Leverett, M.C.: Capillary behavior in porous solids. Trans. AIME 142, 152–169 (1941)

    Article  Google Scholar 

  • Lin, Q., Bijeljic, B., Berg, S., Pini, R., Blunt, M.J., Krevor, S.: Minimal surfaces in porous media: Pore-scale imaging of multiphase flow in an altered-wettability Bentheimer Sandstone. Phys. Rev. E 99, 063105 (2019)

    Article  Google Scholar 

  • Lomeland, F., Ebeltoft, E., Thomas, W. H.: A new versatile relative permeability correlation. International Symposium of the Society of Core Analysts held in Toronto, Canada, 21–25 August, 2005, paper SCA2005–032 (2005)

  • Maas, J. G., Schulte, A. M.: Computer simulation of Special Core Analysis (SCAL) flow experiments shared on the Internet. In: International Symposium of the Society of Core Analysts held in Calgary, Alberta, Canada, 1997, paper SCA1997–19 (1997)

  • Maas, J. G., Flemisch, B., Hebing, A.: Open source simulator DUMUX available for SCAL data interpretation. International Symposium of the Society of Core Analysts held in Austin, Texas, USA 18–21 September, 2011, paper SCA2011–08 (2011)

  • Maas, J. G., Springer, N., Hebing, A.: Defining a sample heterogeneity cut-off value to obtain representative Special Core Analysis (SCAL) measurements. International Symposium of the Society of Core Analysts held in Pau, France, 26–30 August, 2019, paper SCA2019–024.

  • Maini, B., Coskuner, G., Jha, K.: A comparison between steady-state and unsteady-state relative permeability in viscous oil and water in Ottawa sand. Can. J. Petrol. Technol. 29(2), 72–77 (1990)

    Article  Google Scholar 

  • Manasipov, R., Jenei, B.: Automated interpretation tool for synchronous history matching of multiple SCAL experiments with advance nurbs representations of relevant functions. In: SPE Europec featured at 82nd EAGE Conference and Exhibition, 8 June 2020, paper SPE-200559-MS (2020)

  • Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)

    Article  Google Scholar 

  • Masalmeh, S.: The effect of wettability heterogeneity on capillary pressure and relative permeability. J. Petrol. Sci. Eng. 39, 399–408 (2003)

    Article  Google Scholar 

  • Masalmeh, S. K, Sorop, T. G., Suijkerbuijk, B.M.J.M., Vermolen, E.C.M., Douma, S., van der Linde, H. A., Pieterse, S.G.J.: Low salinity flooding: experimental evaluation and numerical interpretation. In: IPTC 17558, presented at the International Petroleum Technology Conference, Doha, Qatar 19–22 January 2014 (2014)

  • Matott, L.S.; Babendreier, J.E.; Purucker, S.T.: Evaluating uncertainty in integrated environmental models: a review of concepts and tools. Water Resour. Res. 45 (2009)

  • McClure, J.E., Armstrong, R.T., Berrill, M.A., Schlüter, S., Berg, S., Gray, W.G., Miller, C.T.: A geometric state function for two-fluid flow in porous media. Phys. Rev. Fluids 3(8), 084306 (2018)

    Article  Google Scholar 

  • Miller, C.T., Valdes-Parada, F.J., Ostvar, S., Wood, B.D.: A priori parameter estimation for the thermodynamically constrained averaging theory: species transport in a saturated porous medium. Transp. Porous Media 122, 611–632 (2018)

    Article  Google Scholar 

  • Muskat, M., Meres, M.: The flow of heterogeneous fluids through porous media. Physics 7, 346 (1936)

    Article  Google Scholar 

  • Newville, M., Stensitzki, T., Allen, D. B., Ingargiola, A.: LMFIT: non-linear least square minimization and curve-fitting for Python. (2014). https://doi.org/10.5281/zenodo.11813

  • Niessner, J., Berg, S., Hassanizadeh, S.M.: Comparison of two-phase Darcy’s law with a thermodynamically consistent approach. Transp. Porous Media 88(1), 133–148 (2011)

    Article  Google Scholar 

  • Okano, H.: Quantification of uncertainty in relative permeability for coarse-scale reservoir simulation. Paper presented at the SPE Europec/EAGE Annual Conference, Madrid, Spain, June 2005., Paper Number: SPE-94140-MS

  • Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  • Pradhan, A., Mukerji, T.: Seismic Bayesian evidential learning: estimation and uncertainty quantification of sub-resolution reservoir properties. Comput. Geosci. 24, 1121–1140 (2020)

    Article  Google Scholar 

  • Press, W.H., Teukosky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  • Ramstad, T., Kristoffersen, A., Ebeltoft, E.: Uncertainty span for relative permeability and capillary pressure by varying wettability and spatiality flow directions utilizing pore scale modelling. E3S Web of Conf. SCA 2019, 146, 01002. Doi:https://doi.org/10.1051/e3sconf/202014601002(2020)

  • Reed, J., Maas, J.: Review of the intercept method for relative permeability correction a variety of case study data. Petrophysics 60(2), 283–296 (2019)

    Google Scholar 

  • Richards, L.: Capillary conduction of liquids through porous mediums. Physics 1(5), 318–333 (1931)

    Article  Google Scholar 

  • Rücker, M., et al.: From connected pathway flow to ganglion dynamics. Geophys. Res. Lett. 42, 3888–3894 (2015)

    Article  Google Scholar 

  • Rücker, M., et al.: The effect of mixed wettability on pore scale flow regimes based on a flooding experiment in ketton limestone. Geophys. Res. Lett. 46(6), 3225–3234 (2019)

    Article  Google Scholar 

  • Scheidt, C., Li, W., Caers, J.: Quantifying uncertainty in subsurface systems, american geophysical union. Wiley, Hoboken (2018)

    Book  Google Scholar 

  • Schiozer, D.J., Ligero, E.L., Suslick, S.B., Costa, A.P.A., Santos, J.A.M.: Use of representative models in the integration of risk analysis and production strategy definition. J. Petrol. Sci. Eng. 44, 131–141 (2004)

    Article  Google Scholar 

  • Simon, C., Hasche, F., Gasteiger, H.A.: Influence of the gas diffusion layer compression on the oxygen transport in PEM fuel cells at high water saturation levels. J. Electrochem. Soc. 164(6), F591–F599 (2017)

    Article  Google Scholar 

  • Skjaeveland, S. M., Siqveland, L. M., Kjosavik, A., Hammervold, W. L., Virnovsky, G. A.: Capillary pressure correlation for mixed-wet reservoirs. In: SPE india oil and gas conference and exhibition, 17–19 February 1998, New Delhi, India, number SPE 39497 (1998)

  • Sorop, T. G., Masalmeh, S. K., Suijkerbuijk, B. M. J. M., van der Linde, H. A., Mahani, H., Brussee, N. J., Marcelis, F. A. H. M., Coorn, A.: Relative permeability measurements to quantify the low salinity flooding effect at field scale. In: Abu Dhabi international petroleum exhibition and conference held in Abu Dhabi, UAE, 9–12 November 2015, number SPE-177865-MS (2015)

  • Subbey, S., Monfared, H., Christie, M., Sambridge, M.: Quantification of uncertainty in flow functions derived from SCAL data. Transp. Porous Media 65, 265–286 (2006)

    Article  Google Scholar 

  • Taheriotaghsara, M.: Enhanced oil recovery methods targeting danish north sea chalk reservoirs PhD Thesis, Denmark Technical University (2020)

  • Taheriotaghsara, M., Bonto, M., Eftekhari, A., Nick, H.M.: Prediction of oil breakthrough time in modified salinity water flooding in carbonate cores. Fuel 274 (2020)

  • Tuller, M., Or, D.: Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space. Water Resour. Res. 37(5), 1257–1276 (2001)

    Article  Google Scholar 

  • Valdez, A.R., Rocha, B.M., Chapiro, G., dos Santos, R.W.: Uncertainty quantification and sensitivity analysis for relative permeability models for two-phase flow in porous media. J. Petrol. Sci. Eng. 192, 107297 (2020)

    Article  Google Scholar 

  • Varnon, J., Greenkorn, R.A.: Nonuniqueness of steady state fingering solutions in porous media. Water Resour. Res. 6, 1411–1414 (1971)

    Article  Google Scholar 

  • Vrugt, J. A., Dane, J.: Inverse modeling of soil hydraulic properties. Encycl. Hydrol. Sci. 6 Soils (2006)

  • Wang, Y., Cheng, S., Zhang, K., An, X.: Type-curve analysis of modified two-rate flow test: a simple yet effective technique to minimize the non-uniqueness of interpretation results. J. Petrol. Sci. Eng. 190

  • Welge, H.J.: A simplified method for computing oil recovery by gas or water drive. J. Petrol. Technol. 4 (1952)

  • Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media. 1, 3–25 (1986). https://doi.org/10.1007/BF01036523

    Article  Google Scholar 

  • Wyckoff, R., Botset, H.: The flow of gas-liquid mixture through unconsolidated sands. Physics 7, 325–345 (1936)

    Article  Google Scholar 

  • Zhao, B., Ratnakar, R., Dindoruk, B., Mohanty, K.: A Hybrid approach for the prediction of relative permeability using machine learning of experimental data and numerical proxy SCAL data. SPE Jo. 25(05), 2749–2764 (2020)

    Article  Google Scholar 

  • Zou, S., Armstrong, R.T., Arns, J.Y., Arns, C.H., Hussain, F.: Experimental and theoretical evidence for increased ganglion dynamics during fractional flow in mixed-wet porous media. Water Resour. Res. 54(5), 3277–3289 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Tibi Sorop, Yingxue Wang, F. Omer Alpak, Matthias Appel, Justin Freeman, and Martin Kraaijveld are acknowledged for helpful discussions and their support.

Funding

Shell Global Solutions International B.V. has provided funding for conducting this research.

Author information

Authors and Affiliations

Authors

Contributions

S. B. and H. D. conceptualized the work. H.D. wrote the Python two-phase flow code and the interface to the commercial reservoir simulator. S. B. and E. U. wrote and revised the manuscript.

Corresponding author

Correspondence to Steffen Berg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Data and material are available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, S., Unsal, E. & Dijk, H. Sensitivity and Uncertainty Analysis for Parameterization of Multiphase Flow Models. Transp Porous Med 140, 27–57 (2021). https://doi.org/10.1007/s11242-021-01576-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01576-4

Keywords

Navigation