Skip to main content

Advertisement

Log in

Seismic Bayesian evidential learning: estimation and uncertainty quantification of sub-resolution reservoir properties

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a framework that enables estimation of low-dimensional sub-resolution reservoir properties directly from seismic data, without requiring the solution of a high dimensional seismic inverse problem. Our workflow is based on the Bayesian evidential learning approach and exploits learning the direct relation between seismic data and reservoir properties to efficiently estimate reservoir properties. The theoretical framework we develop allows incorporation of non-linear statistical models for seismic estimation problems. Uncertainty quantification is performed with approximate Bayesian computation. With the help of a synthetic example of estimation of reservoir net-to-gross and average fluid saturations in sub-resolution thin sand reservoir, several nuances are foregrounded regarding the applicability of unsupervised and supervised learning methods for seismic estimation problems. Finally, we demonstrate the efficacy of our approach by estimating posterior uncertainty of reservoir net-to-gross in sub-resolution thin sand reservoir from an offshore delta dataset using 3D pre-stack seismic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleardi, M., Ciabarri, F.: Assessment of different approaches to rock-physics modeling: a case study from offshore Nile Delta. Geophysics. 82(1), MR15–MR25 (2017). https://doi.org/10.1190/geo2016-0194.1

    Article  Google Scholar 

  2. Aleardi, M., Ciabarri, F., Calabrò, R.: Two-stage and single-stage seismic-petrophysical inversions applied in the Nile Delta. Lead. Edge. 37(7), 510–518 (2018). https://doi.org/10.1190/tle37070510.1

    Article  Google Scholar 

  3. Aleardi, M.: Applying a probabilistic seismic-petrophysical inversion and two different rock-physics models for reservoir characterization in offshore Nile Delta. J. Appl. Geochem. 148, 272–286 (2018). https://doi.org/10.1016/j.jappgeo.2017.12.006

    Article  Google Scholar 

  4. Aki, K., Richards, P.G.: Quantitative seismology. W. H. Freeman & Co, Washington, D.C. (1980)

    Google Scholar 

  5. Avseth, P., Mukerji, T., Mavko, G.: Quantitative Seismic Interpretation. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  6. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics. 162, 2025–2035 (2002)

    Google Scholar 

  7. Beaumont, M.A.: Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41, 379–406 (2010)

    Article  Google Scholar 

  8. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  9. Blum, M.G.B.: Approximate Bayesian computation: a nonparametric perspective. J. Am. Stat. Assoc. 105, 1178–1187 (2010a) MR2752613

    Article  Google Scholar 

  10. Blum, M.G.B.: Choosing the summary statistics and the acceptance rate in approximate Bayesian computation. In: Saporta, G., Lechevallier, Y. (eds.) COMPSTAT 2010: Proceedings in Computational Statistics, pp. 47–56. Springer, New York (2010b)

    Chapter  Google Scholar 

  11. Blum, M.G.B., Nunes, M.A., Prangle, D., Sisson, S.A.: A comparative review of dimension reduction methods in approximate Bayesian computation. Stat. Sci. 28(2), 189–208 (2013)

    Article  Google Scholar 

  12. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer (1997)

  13. Bosch, M., Mukerji, T., Gonzalez, E.F.: Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics. 75(5), A165–A176 (2010). https://doi.org/10.1190/1.3478209

    Article  Google Scholar 

  14. Cunningham, P.: In: Cord, M., Cunningham, P. (eds.) Dimension reduction: Machine learning techniques for multimedia: case studies on organization and retrieval. Springer (2008)

  15. Daubechies, I.: Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics, SIAM Ed (1992)

  16. Dejtrakulwong, P.: Rock physics and seismic signatures of sub-resolution sand-shale systems: Ph.D. Thesis, Stanford University, California (2012)

  17. Dejtrakulwong, P., Mukerji, T., Mavko, G.: Using kernel principal component analysis to interpret seismic signatures of thin shaly-sand reservoirs. SEG Exp. Abstr. (2012). https://doi.org/10.1190/segam2012-1013.1

  18. Deutsch, C., Journel, A.G.: GSLIB: geostatistical software library and user’s guide. Oxford University Press, London (1992)

    Google Scholar 

  19. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika. 81, 425–455 (1994) MR1311089

    Article  Google Scholar 

  20. Donoho, D., Johnstone, I., Kerkyacharia, G., Picard, D.: Wavelet shrinkage: asymptopia? (with discussion). J. Roy. Statist. Soc. Ser.B. 57, 301–337 (1995) MR1323344

    Google Scholar 

  21. Eidsvik, J., Mukerji, T., Switzer, P.: Estimation of geological attributes from a well log: an application of hidden Markov chains. Math. Geol. 36(3), 379–397 (2004)

    Article  Google Scholar 

  22. Fearnhead, P., Prangle, D.: Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat Methodol. 74(3), 419–474 (2012)

    Article  Google Scholar 

  23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)

    Google Scholar 

  24. Goovaerts, P.: Geostatistics for natural resources evaluation. Oxford University Press, London (1997)

    Google Scholar 

  25. Grana, D., Mukerji, T., Dvorkin, J., Mavko, G.: Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method. Geophysics. 77(4), M53–M72 (2012). https://doi.org/10.1190/geo2011-0417.1

    Article  Google Scholar 

  26. Hermans, T., Oware, E., Caers, J.: Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data. Water Resour. Res. 52(9), 7262–7283. ISSN 19447973 (2016). https://doi.org/10.1002/2016WR019126

    Article  Google Scholar 

  27. Hinton, G. E., Zemel, R. S.: Autoencoders, minimum description length, and helmholtz free energy. In: NIPS, 1993 (1994)

  28. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science. 313(5786), 504–507 (2006)

    Article  Google Scholar 

  29. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37(ICML’15), vol. 37, pp. 448–456 (2015) JMLR.org

    Google Scholar 

  30. Jiang, B., T.-y. Wu, C. Zheng, and W. H. Wong, 2015, Learning summary statistic for approximate Bayesian computation via deep neural network. arXiv preprint arXiv:1510.02175

  31. Kingma, D., and J. Ba, 2014, Adam: a method for stochastic optimization: arXiv preprint arXiv:1412.6980

  32. Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area V2. In: Platt, J., Koller, D., Singer, Y., Roweis, S.P. (eds.) Advances in Neural Information Processing Systems 20 (NIPS’07). MIT Press, Cambridge, MA (2008)

    Google Scholar 

  33. Li, L., A Bayesian approach to causal and evidential analysis for uncertainty quantification throughout the reservoir forecasting process: Ph.D. Thesis, Stanford University, California (2017)

  34. Mallat, S.: A wavelet tour of signal processing, 2nd edn. Academic Press, San Diego (1999)

    Google Scholar 

  35. Marion, D., Nur, A., Yin, H., Han, D.: Compressional velocity and porosity in sand-clay mixtures. Geophysics. 60(1), 241–251 (1992)

    Google Scholar 

  36. Mavko, G., Mukerji, T., Dvorkin, J.: The rock physics handbook, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  37. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control. 26(1), 17–32 (1981)

    Article  Google Scholar 

  38. Rousseeuw, P.J., Van Zomeren, B.C.: Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc. 85(411), 633–651 (1990)

    Article  Google Scholar 

  39. Rousseeuw, P.J., Van Driessen, K.: A fast algorithm for the minimum covariance determinant estimator. Technometrics. 41, 212–223 (1999)

    Article  Google Scholar 

  40. Satija, A., Caers, J.: Direct forecasting of subsurface flow response from non-linear dynamic data by linear least-squares in canonical functional principal component space. Adv. Water Resour. 77, 69–81, ISSN 03091708 (2015). https://doi.org/10.1016/j.advwatres.2015.01.002

    Article  Google Scholar 

  41. Satija, A., Scheidt, C., Li, L., Caers, J.: Direct forecasting of reservoir performance using production data without history matching. Comput. Geosci. 21(2), 315–333 (2017)

    Article  Google Scholar 

  42. Scheidt, C., Renard, P., Caers, J.: Prediction-focused subsurface modeling: investigating the need for accuracy in flow-based inverse modeling. Math. Geosci. 47(2), 173–191, ISSN 18748953 (2014). https://doi.org/10.1007/s11004-014-9521-6

    Article  Google Scholar 

  43. Scheidt, C., Li, L., Caers, J.: Quantifying uncertainty in subsurface systems. Wiley-Blackwell, New Jerseys (2017)

    Google Scholar 

  44. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  45. Scott, D.W., Tapia, R.A., Thompson, R.A.: Kernel density estimation revisited: nonlinear analysis. Theory Methods Appl. 1, 339–372 (1977)

    Article  Google Scholar 

  46. Silverman, B.W.: Density estimation for statistics and data analysis. Chapman & Hall, London (1986)

    Book  Google Scholar 

  47. Sisson, S. and Y. Fan, 2010, Likelihood-free Markov chain Monte Carlo: arXiv preprint arXiv:1001.2058

  48. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    Google Scholar 

  49. Tarantola, A.: Inverse problem theory and methods for model parameter estimation: SIAM (2005)

  50. Vidakovic, B.: Statistical modeling by wavelets, p. MR1681904. John Wiley & Sons, New York (1999)

    Book  Google Scholar 

  51. Wegmann, D., Leuenberger, C., Excoffier, L.: Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics. 182(4), 1207–1218 (2009)

    Article  Google Scholar 

  52. Walden, A.T., White, R.E.: Seismic wavelet estimation: a frequency domain solution to a geophysical noisy input-output problem. IEEE Trans. Geosci. Remote Sens. 36, 287–297 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the sponsors of the Stanford Center for Earth Resources Forecasting (SCERF), and support from the Dean of the Stanford School of Earth, Energy, and Environmental Sciences, Professor Steve Graham. We thank Edison E&P for providing the dataset for the real case application. We offer special thanks to Dr. Fabio Ciabarri for his advice and assistance regarding various aspects of the real dataset. We would also like to thank Professor Jef Caers for insightful discussions regarding the methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman Pradhan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, A., Mukerji, T. Seismic Bayesian evidential learning: estimation and uncertainty quantification of sub-resolution reservoir properties. Comput Geosci 24, 1121–1140 (2020). https://doi.org/10.1007/s10596-019-09929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09929-1

Keywords

Navigation