Skip to main content
Log in

Stochastic Effects of 2D Random Arrays of Cylinders on Rarefied Gas Permeability Using the Lattice Boltzmann Method

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A large set of 2D random arrays of circular cylinders is generated to perform a statistical study on rarefied gas flow through micro-porous media. The flow regimes in this work lie for Knudsen numbers (Kn) ranging from the continuum to the transition regimes. Arrays are built by randomly placing cylinders with constant diameter with a uniform distribution without overlapping, and are generated for three target porosities. Fluid flow is assumed to be incompressible and isothermal. A modified lattice Boltzmann model is adopted to account for discrete effects, with slip-velocity boundary conditions and a Kn-dependent multi-relaxation time collision operator. The apparent permeability is modeled with Darcy’s law with a Klinkenberg-type relationship and compared with existing correlations. Velocity fields highlight the increasing contribution of fluid flow through small pores with increasing Kn. Numerical results show that porous media randomness leads to an uncertainty on rarefied gas permeability calculation despite the same structural characteristics and may not strictly follow a specific correlation. The influence of a local collision operator based on a local Kn instead of a global one in the numerical model is also studied. Results show that the permeability in rarefied regimes undergoes significant deviation when applying the local collision operator compared to the global one. These differences could result from a more accurate capture of the pore-scale behavior with a local Kn. Thus, it emphasizes the sensitivity of the model and the apparent permeability calculation to the appropriate definition of Kn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agrawal, A.: A comprehensive review on gas flow in microchannels. Int. J. Micro-Nano Scale Transp. 2, 1 (2012)

    Article  Google Scholar 

  • Ansumali, S., Karlin, I.V.: Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E 66(2), 026311 (2002)

    Article  Google Scholar 

  • Arlemark, E.J., Dadzie, S.K., Reese, J.M.: An extension to the Navier–Stokes equations to incorporate gas molecular collisions with boundaries. J. Heat Transf. 132(4), 041006 (2010)

    Article  Google Scholar 

  • Avramenko, A., Kovetska, Y., Shevchuk, I., Tyrinov, A., Shevchuk, V.: Heat transfer in porous microchannels with second-order slipping boundary conditions. Transp. Porous Media 129(3), 673–699 (2019)

    Article  Google Scholar 

  • Azhdari, A., Talebi, F., Valipour, M.S.: Investigation of pore-scale random porous media using lattice Boltzmann method. J. Heat Mass Transf. Res. 2(1), 1–12 (2015)

    Google Scholar 

  • Beard, D., Weyl, P.: Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bull. 57(2), 349–369 (1973)

    Google Scholar 

  • Beskok, A., Karniadakis, G.E.: Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)

    Article  Google Scholar 

  • Borner, A., Panerai, F., Mansour, N.N.: High temperature permeability of fibrous materials using direct simulation Monte Carlo. Int. J. Heat Mass Transf. 106, 1318–1326 (2017)

    Article  Google Scholar 

  • Bosl, W.J., Dvorkin, J., Nur, A.: A study of porosity and permeability using a lattice Boltzmann simulation. Geophys. Res. Lett. 25(9), 1475–1478 (1998)

    Article  Google Scholar 

  • Cancelliere, A., Chang, C., Foti, E., Rothman, D.H., Succi, S.: The permeability of a random medium: comparison of simulation with theory. Phys. Fluids A: Fluid Dyn. 2(12), 2085–2088 (1990)

    Article  Google Scholar 

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  • Carman, P.C.: Permeability of saturated sands, soils and clays. J. Agric. Sci. 29(2), 262–273 (1939)

    Article  Google Scholar 

  • Cercignani, C.: Mathematical Methods in Kinetic Theory. Springer, Boston (1969)

    Book  Google Scholar 

  • Chai, Z., Shi, B., Guo, Z., Lu, J.: Gas flow through square arrays of circular cylinders with Klinkenberg effect: a lattice Boltzmann study. Commun. Comput. Phys. 8(5), 1052 (2010a)

    Article  Google Scholar 

  • Chai, Z., Shi, B., Lu, J., Guo, Z.: Non-darcy flow in disordered porous media: a lattice Boltzmann study. Comput. Fluids 39(10), 2069–2077 (2010b)

    Article  Google Scholar 

  • Chai, Z., Lu, J., Shi, B., Guo, Z.: Gas slippage effect on the permeability of circular cylinders in a square array. Int. J. Heat Mass Transfer 54(13–14), 3009–3014 (2011)

    Article  Google Scholar 

  • Chen, L., Kang, Q., Dai, Z., Viswanathan, H.S., Tao, W.: Permeability prediction of shale matrix reconstructed using the elementary building block model. Fuel 160, 346–356 (2015a)

    Article  Google Scholar 

  • Chen, L., Kang, Q., Pawar, R., He, Y.L., Tao, W.Q.: Pore-scale prediction of transport properties in reconstructed nanostructures of organic matter in shales. Fuel 158, 650–658 (2015b)

    Article  Google Scholar 

  • Chen, L., Zhang, L., Kang, Q., Viswanathan, H.S., Yao, J., Tao, W.: Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity. Sci. Rep. 5(1), 1–8 (2015c)

    Google Scholar 

  • Chen, L., Zhang, R., Min, T., Kang, Q., Tao, W.: Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media. Chem. Eng. J. 349, 428–437 (2018)

    Article  Google Scholar 

  • Childs, E.C., Collis-George, N.: The permeability of porous materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 201(1066), 392–405 (1950)

    Google Scholar 

  • Coskun, S.B., Wardlaw, N.C.: Estimation of permeability from image analysis of reservoir sandstones. J. Pet. Sci. Eng. 10(1), 1–16 (1993)

    Article  Google Scholar 

  • Costa, V., Oliveira, L., Baliga, B., Sousa, A.: Simulation of coupled flows in adjacent porous and open domains using a control-volume finite-element method. Numer. Heat Transf. Part A: Appl. 45(7), 675–697 (2004)

    Article  Google Scholar 

  • Dongari, N., Zhang, Y., Reese, J.M.: Modeling of Knudsen layer effects in micro/nanoscale gas flows. J. Fluids Eng. 133(7), 071101 (2011)

    Article  Google Scholar 

  • Endruweit, A., Long, A.C.: Influence of stochastic variations in the fibre spacing on the permeability of bi-directional textile fabrics. Compos. Part A: Appl. Sci. Manuf. 37(5), 679–694 (2006)

    Article  Google Scholar 

  • Endruweit, A., Long, A.C., Robitaille, F., Rudd, C.D.: Influence of stochastic fibre angle variations on the permeability of bi-directional textile fabrics. Compos. Part A: Appl. Sci. Manuf. 37(1), 122–132 (2006)

    Article  Google Scholar 

  • Fraser, H.: Experimental study of the porosity and permeability of clastic sediments. J. Geol. 43(8, Part 1), 910–1010 (1935)

    Article  Google Scholar 

  • Fryer, G.: A theory of gas flow through capillary tubes. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 293(1434), 329–341 (1966)

    Google Scholar 

  • Guo, Z., Shu, C.: Lattice Boltzmann method and its applications in engineering, vol. 3. World Scientific, Singapore (2013)

    Google Scholar 

  • Guo, Z., Zhao, T.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66(3), 036304 (2002)

    Article  Google Scholar 

  • Guo, Z., Zheng, C.: Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer. Int. J. Comput. Fluid Dyn. 22(7), 465–473 (2008)

    Article  Google Scholar 

  • Guo, Z., Shi, B., Zhao, T., Zheng, C.: Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys. Rev. E 76(5), 056704 (2007)

    Article  Google Scholar 

  • Guo, Z., Zheng, C., Shi, B.: Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys. Rev. E 77(3), 036707 (2008)

    Article  Google Scholar 

  • Ho, M., Leclaire, S., Reggio, M., Trépanier, J.Y.: Investigation of advection-diffusion problems and simulations using the lattice Boltzmann method and the arrayfire library for HPC on GPU. Oral presentation at CFDSC 2019, London, CANADA (2019a)

  • Ho, M., Pérez, J.G., Reggio, M., Trépanier, J.Y.: Permeability calculation of rarefied gas flows through 2D porous structures using the lattice Boltzmann method. Phys. Chem. Earth, Parts A/B/C 113, 43–49 (2019b)

    Article  Google Scholar 

  • Ho, M., Leclaire, S., Trépanier, J.Y., Reggio, M., Martin, A.: Permeability calculation of a fibrous thermal insulator using the lattice Boltzmann method (2020)

  • Javadpour, F., et al.: Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Pet. Technol. 48(08), 16–21 (2009)

    Article  Google Scholar 

  • Jeong, N., Choi, D.H., Lin, C.L.: Prediction of Darcy–Forchheimer drag for micro-porous structures of complex geometry using the lattice Boltzmann method. J. Micromech. Microeng. 16(10), 2240 (2006)

    Article  Google Scholar 

  • Klinkenberg, L., et al.: The permeability of porous media to liquids and gases. In: Drilling and production practice, American Petroleum Institute (1941)

  • Landry, C.J., Prodanović, M., Eichhubl, P.: Direct simulation of supercritical gas flow in complex nanoporous media and prediction of apparent permeability. Int. J. Coal Geol. 159, 120–134 (2016)

    Article  Google Scholar 

  • Lange, K.J., Sui, P.C., Djilali, N.: Pore scale simulation of transport and electrochemical reactions in reconstructed PEMFC catalyst layers. J. Electrochem. Soc. 157(10), B1434–B1442 (2010)

    Article  Google Scholar 

  • Latt, J., Chopard, B.: Lattice Boltzmann method with regularized pre-collision distribution functions. Math. Comput. Simul. 72(2–6), 165–168 (2006)

    Article  Google Scholar 

  • Latt, J., Chopard, B., Malaspinas, O., Deville, M., Michler, A.: Straight velocity boundaries in the lattice Boltzmann method. Phys. Rev. E 77(5), 056703 (2008)

    Article  Google Scholar 

  • Li, J., Brown, D., Calo, V., Efendiev, Y., Iliev, O., et al.: Multiscale lattice Boltzmann method for flow simulations in highly heterogenous porous media. In: SPE Reservoir Characterization and Simulation Conference and Exhibition, Society of Petroleum Engineers (2013a)

  • Li, Q., He, Y., Tang, G., Tao, W.: Lattice Boltzmann modeling of microchannel flows in the transition flow regime. Microfluid. Nanofluidics 10(3), 607–618 (2011)

    Article  Google Scholar 

  • Li, X., Cai, J., Xin, F., Huai, X., Guo, J.: Lattice Boltzmann simulation of endothermal catalytic reaction in catalyst porous media. Appl. Therm. Eng. 50(1), 1194–1200 (2013b)

    Article  Google Scholar 

  • Li, X., Chen, J., Xu, M., Huai, X., Xin, F., Cai, J.: Lattice Boltzmann simulation of catalytic reaction in porous media with buoyancy. Appl. Therm. Eng. 70(1), 586–592 (2014)

    Article  Google Scholar 

  • Liao, Q., Yang, Y.X., Zhu, X., Chen, R., Fu, Q.: Pore-scale lattice Boltzmann simulation of flow and mass transfer in bioreactor with an immobilized granule for biohydrogen production. Sci. Bull. 62(1), 22–30 (2017)

    Article  Google Scholar 

  • Liu, L., Yao, J., Zhang, L., An, S., Zhao, J., Sun, H.: Rev-scale simulation of micro-fractured unconventional gas reservoir. J. Nat. Gas Sci. Eng. 48, 100–110 (2017)

    Article  Google Scholar 

  • Liu, X., Guo, Z.: A lattice Boltzmann study of gas flows in a long micro-channel. Comput. Math. Appl. 65(2), 186–193 (2013)

    Article  Google Scholar 

  • Liu, Z., Wu, H.: Pore-scale study on flow and heat transfer in 3D reconstructed porous media using micro-tomography images. Appl. Therm. Eng. 100, 602–610 (2016)

    Article  Google Scholar 

  • Ma, Q., Chen, Z.: Lattice Boltzmann simulation of multicomponent noncontinuum diffusion in fractal porous structures. Phys. Rev. E 92(1), 013025 (2015)

    Article  Google Scholar 

  • Martys, N.S., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53(1), 743 (1996)

    Article  Google Scholar 

  • Michalis, V.K., Kalarakis, A.N., Skouras, E.D., Burganos, V.N.: Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid. Nanofluidics 9(4–5), 847–853 (2010)

    Article  Google Scholar 

  • Mohammadmoradi, P., Kantzas, A.: Pore-scale permeability calculation using CFD and DSMC techniques. J. Pet. Sci. Eng. 146, 515–525 (2016)

    Article  Google Scholar 

  • Montessori, A., Prestininzi, P., La Rocca, M., Succi, S.: Lattice Boltzmann approach for complex nonequilibrium flows. Phys. Rev. E 92(4), 043308 (2015)

    Article  Google Scholar 

  • Mosavat, N., Hasanidarabadi, B., Pourafshary, P.: Gaseous slip flow simulation in a micro/nano pore-throat structure using the lattice Boltzmann model. J. Pet. Sci. Eng. 177, 93–103 (2019)

    Article  Google Scholar 

  • Mostaghimi, P., Liu, M., Arns, C.H.: Numerical simulation of reactive transport on micro-CT images. Math. Geosci. 48(8), 963–983 (2016)

    Article  Google Scholar 

  • Nabovati, A., Sousa, A.: Fluid flow simulation in random porous media at pore level using lattice Boltzmann method. In: New Trends in Fluid Mechanics Research, pp. 518–521. , Springer (2007)

  • Nabovati, A., Llewellin, E.W., Sousa, A.C.: A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Compos. Part A: Appl. Sci. Manuf. 40(6–7), 860–869 (2009)

    Article  Google Scholar 

  • Ostoja-Starzewski, M.: Material spatial randomness: from statistical to representative volume element. Probab. Eng. Mech. 21(2), 112–132 (2006)

    Article  Google Scholar 

  • Pan, Y., Kong, S.C.: Simulation of biomass particle evolution under pyrolysis conditions using lattice Boltzmann method. Combust. Flame 178, 21–34 (2017)

    Article  Google Scholar 

  • Panerai, F., White, J.D., Cochell, T.J., Schroeder, O.M., Mansour, N.N., Wright, M.J., Martin, A.: Experimental measurements of the permeability of fibrous carbon at high-temperature. Int. J. Heat Mass Transf. 101, 267–273 (2016)

    Article  Google Scholar 

  • Poovathingal, S., Stern, E.C., Nompelis, I., Schwartzentruber, T.E., Candler, G.V.: Nonequilibrium flow through porous thermal protection materials, part II: oxidation and pyrolysis. J. Comput. Phys. 380, 427–441 (2019)

    Article  Google Scholar 

  • Ren, J., Zheng, Q., Guo, P., Peng, S., Wang, Z., Du, J.: Pore-scale lattice Boltzmann simulation of two-component shale gas flow. J. Nat. Gas Sci. Eng. 61, 46–70 (2019)

    Article  Google Scholar 

  • Shou, D., Fan, J., Ding, F.: Hydraulic permeability of fibrous porous media. Int. J. Heat Mass Transf. 54(17–18), 4009–4018 (2011)

    Article  Google Scholar 

  • Stern, E., Nompelis, I., Schwartzentruber, T.E., Candler, G.V.: Microscale simulations of porous TPS materials: application to permeability. In: 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, p. 2247 (2014)

  • Succi, S., Foti, E., Higuera, F.: Three-dimensional flows in complex geometries with the lattice Boltzmann method. EPL (Europhys. Lett.) 10(5), 433 (1989)

    Article  Google Scholar 

  • Suga, K., Takenaka, S., Ito, T., Kaneda, M., Kinjo, T., Hyodo, S.: Lattice Boltzmann flow simulation in micro-nano transitional porous media. In: 2010 14th International Heat Transfer Conference, American Society of Mechanical Engineers Digital Collection, pp. 321–329 (2010)

  • Sullivan, S., Sani, F., Johns, M., Gladden, L.: Simulation of packed bed reactors using lattice Boltzmann methods. Chem. Eng. Sci. 60(12), 3405–3418 (2005)

    Article  Google Scholar 

  • Tucny, J.M., Vidal, D., Leclaire, S., Bertrand, F.: Comparison of existing and extended boundary conditions for the simulation of rarefied gas flows using the lattice Boltzmann method. Int. J. Mod. Phys. C 31(5), 2050070 (2016)

    Article  Google Scholar 

  • Verhaeghe, F., Luo, L.S., Blanpain, B.: Lattice Boltzmann modeling of microchannel flow in slip flow regime. J. Comput. Phys. 228(1), 147–157 (2009)

    Article  Google Scholar 

  • Vidal, D., Ridgway, C., Pianet, G., Schoelkopf, J., Roy, R., Bertrand, F.: Effect of particle size distribution and packing compression on fluid permeability as predicted by lattice-Boltzmann simulations. Comput. Chem. Eng. 33(1), 256–266 (2009)

    Article  Google Scholar 

  • Wang, J., Chen, L., Kang, Q., Rahman, S.S.: The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: a review. Int. J. Heat Mass Transf. 95, 94–108 (2016a)

    Article  Google Scholar 

  • Wang, J., Kang, Q., Wang, Y., Pawar, R., Rahman, S.S.: Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method. Fuel 205, 232–246 (2017)

    Article  Google Scholar 

  • Wang, Z., Jin, X., Wang, X., Sun, L., Wang, M.: Pore-scale geometry effects on gas permeability in shale. J. Nat. Gas Sci. Eng. 34, 948–957 (2016b)

    Article  Google Scholar 

  • Wu, K., Li, X., Wang, C., Chen, Z., Yu, W.: A model for gas transport in microfractures of shale and tight gas reservoirs. AIChE J. 61(6), 2079–2088 (2015)

    Article  Google Scholar 

  • Wyckoff, R., Botset, H., Muskat, M., Reed, D.: The measurement of the permeability of porous media for homogeneous fluids. Rev. Sci. Instrum. 4(7), 394–405 (1933)

    Article  Google Scholar 

  • Xu, Q., Long, W., Jiang, H., Zan, C., Huang, J., Chen, X., Shi, L.: Pore-scale modelling of the coupled thermal and reactive flow at the combustion front during crude oil in-situ combustion. Chem. Eng. J. 350, 776–790 (2018)

    Article  Google Scholar 

  • Xuan, Y., Zhao, K., Li, Q.: Investigation on mass diffusion process in porous media based on lattice Boltzmann method. Heat Mass Transf. 46(10), 1039–1051 (2010)

    Article  Google Scholar 

  • Yalamanchili, P., Arshad, U., Mohammed, Z., Garigipati, P., Entschev, P., Kloppenborg, B., Malcolm, J., Melonakos, J.: ArrayFire: a high performance software library for parallel computing with an easy-to-use API. https://github.com/arrayfire/arrayfire (2015)

  • Yang, G., Weigand, B.: Investigation of the Klinkenberg effect in a micro/nanoporous medium by direct simulation Monte Carlo method. Phys. Rev. Fluids 3(4), 044201 (2018)

    Article  Google Scholar 

  • Yang, P., Wen, Z., Dou, R., Liu, X.: Effect of random structure on permeability and heat transfer characteristics for flow in 2D porous medium based on MRT lattice Boltzmann method. Phys. Lett. A 380(37), 2902–2911 (2016)

    Article  Google Scholar 

  • Yang, P., Wen, Z., Dou, R., Liu, X.: Permeability in multi-sized structures of random packed porous media using three-dimensional lattice Boltzmann method. Int. J. Heat Mass Transf. 106, 1368–1375 (2017)

    Article  Google Scholar 

  • Yin, X., Chen, W., To, A., McVeigh, C., Liu, W.K.: Statistical volume element method for predicting microstructure-constitutive property relations. Comput. Methods Appl. Mech. Eng. 197(43–44), 3516–3529 (2008)

    Article  Google Scholar 

  • Young, J., Todd, B.: Modelling of multi-component gas flows in capillaries and porous solids. Int. J. Heat Mass Transf. 48(25–26), 5338–5353 (2005)

    Article  Google Scholar 

  • Zeng, Y., Ning, Z., Wang, Q., Sun, H., Huang, L., Ye, H.: Gas transport in self-affine rough microchannels of shale gas reservoir. J. Pet. Sci. Eng. 167, 716–728 (2018)

    Article  Google Scholar 

  • Zhang, D., Zhang, R., Chen, S., Soll, W.E.: Pore scale study of flow in porous media: scale dependency, rev, and statistical rev. Geophys. Res. Lett. 27(8), 1195–1198 (2000)

    Article  Google Scholar 

  • Zhang, T., Sun, S., Song, H.: Flow mechanism and simulation approaches for shale gas reservoirs: a review. Transp. Porous Media 126(3), 655–681 (2019)

    Article  Google Scholar 

  • Zhang, X., Xiao, L., Shan, X., Guo, L.: Lattice Boltzmann simulation of shale gas transport in organic nano-pores. Sci. Rep. 4, 4843 (2014)

    Article  Google Scholar 

  • Zhao, J., Yao, J., Li, A., Zhang, M., Zhang, L., Yang, Y., Sun, H.: Simulation of microscale gas flow in heterogeneous porous media based on the lattice Boltzmann method. J. Appl. Phys. 120(8), 084306 (2016a)

    Article  Google Scholar 

  • Zhao, J., Yao, J., Zhang, M., Zhang, L., Yang, Y., Sun, H., An, S., Li, A.: Study of gas flow characteristics in tight porous media with a microscale lattice Boltzmann model. Sci. Rep. 6, 32393 (2016b)

    Article  Google Scholar 

  • Zhao, T., Zhao, H., Li, X., Ning, Z., Wang, Q., Zhao, W., Zhang, J.: Pore scale characteristics of gas flow in shale matrix determined by the regularized lattice Boltzmann method. Chem. Eng. Sci. 187, 245–255 (2018)

    Article  Google Scholar 

  • Zhou, L., Qu, Z., Ding, T., Miao, J.: Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media. Phys. Rev. E 93(4), 043101 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Simulation-based Engineering Science (Génie Par la Simulation) program funded through the CREATE program from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Ho.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, M., Leclaire, S., Reggio, M. et al. Stochastic Effects of 2D Random Arrays of Cylinders on Rarefied Gas Permeability Using the Lattice Boltzmann Method. Transp Porous Med 136, 607–637 (2021). https://doi.org/10.1007/s11242-020-01532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01532-8

Keywords

Navigation