Skip to main content
Log in

Investigation on mass diffusion process in porous media based on Lattice Boltzmann method

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The mass diffusion process inside a porous medium is difficult for numerical simulation due to complex and stochastic nature of its structure. Based on the lattice Boltzmann method and reconstruction technology, this article presents an approach for simulating mass diffusion process and predicting the effective mass diffusivity in porous media, which is validated by comparing theoretical and experimental data. The concentration distribution and effective mass diffusivity inside porous media can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cao Y, Faghri A (1994) Analytical solutions of flow and heat transferin a porous structure with partial heating and evaporation on the upper surface. Int J Heat Mass Transf 36(10):1525–1533

    Article  Google Scholar 

  2. Cao Y, Faghri A (1994) Conjugate analysis of a flat-plate type evaporator for capillary pumped loop with three-dimensional vapor flow in the groove. Int J Heat Mass Transf 37(3):401–409

    Article  Google Scholar 

  3. Tarik K, John G (2006) Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe. Int J Heat Mass Transf 49:3211–3220

    Article  MATH  Google Scholar 

  4. Ren C, Wu QS, Hu MB (2007) Heat transfer with flow and evaporation in loop heat pipe’s wick at low or moderate heat fluxes. Int J Heat Mass Transf 50:2296–2308

    Article  MATH  Google Scholar 

  5. Qian JY, Li Q, Xuan YM (2004) A novel method to determine effective thermal conductivity of porous material. Sci Chin Ser E Technol Sci 47:716–724

    Article  MATH  Google Scholar 

  6. Bhattacharya A, Calmidi VV, Mahajan RL (2002) Thermophysical properties of high porosity metal foams. Int J Heat Mass Transf 45(5):1017–1031

    Article  MATH  Google Scholar 

  7. Paek JW, Kang BH, Kim SY, Hyun JM (2000) Effective thermal conductivity and permeability of aluminum foam materials. Int J Thermophys 21(2):453–464

    Article  Google Scholar 

  8. Manwart C, Aaltosalmi U, Koponen A, Hilfer R, Timonen J (2002) Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Phys Rev E 66(1):016702/1-11

    Google Scholar 

  9. Kim YM, Harrad S, Harrison RM (2001) Concentrations and sources of VOCs in uran domestic and public microenvironments environ. Sci Technol 35:997–1004

    Article  Google Scholar 

  10. Meininghaus R, Salthammer T, Knoppel H (1999) Interaction of volatile organic compounds with indoor materials—a small-scale screening method. Atmos Environ 33:2395–2401

    Article  Google Scholar 

  11. Molhave L (1989) Sick buildings and other buildings with indoor climate problems. Environment 15:473–482

    Google Scholar 

  12. Cox SS, Zhao D, Little JC (2001) Measuring partition and diffusion coefficients for volatile organic compounds in vinyl flooring. Atmos Environ 35:709–714

    Article  Google Scholar 

  13. Haghighat F, Zhang Y (1999) Modeling of emission of volatile organic compounds from building materials—estimation of gas-phase mass transfer coefficient. Build Environ 37:1349–1360

    Google Scholar 

  14. Lee CS, Haghighat F, Ghaly WS (2005) A study on VOC source and sink behavior in porous building materials—analytical model development and assessment. Indoor Air 15:183–196

    Article  Google Scholar 

  15. Little JC, Hodgson AT, Gadgil AJ (1994) Modeling emissions of volatile organic compounds from new carpets. Environment 28:227–234

    Google Scholar 

  16. Hu HP, Zhang YP, Wang XK, Little JC (2007) An analytical mass transfer model for predicting VOC emissions from multi-layered building materials with convective surface on both sides. Int J Heat Mass Transf 50:2069–2077

    Article  MATH  Google Scholar 

  17. Xiong JY, Zhang YP, Wang XK, Chang DW (2008) Macro-meso two scale model for predicting the VOC diffusion coefficients and emission characteristics of porous building materials. Atmos Environ 42:5278–5290

    Article  Google Scholar 

  18. Frank PI, David PD (2002) Fundamentals of heat and mass transfer, 5th edn. Wiley, New York, pp 859–870

    Google Scholar 

  19. Benzi R, Succi S, Vergassola M (1992) The lattice-Boltzmann equation: theory and applications. Phys Rep 222:145–197

    Article  Google Scholar 

  20. Qian Y, Succi S, Orszag S (1995) Resent advances in lattice Boltzmann computing. Annu Rev Comp Phys 3:195–242

    MathSciNet  Google Scholar 

  21. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  22. Xuan YM, Li Q, Ye M (2007) Investigations of convective heat transfer in ferrofluid microflows using lattice-Boltzmann approach. Int J Therm Sci 46:105–111

    Article  Google Scholar 

  23. Li HN, Pan CX, Miller CT (2005) Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Phys Rev E 72:026705/1-14

    Google Scholar 

  24. Li Q, Zheng CG, Wang NC, Shi BC (2001) LBGK simulations of turing patterns in CIMA model. J Sci Comput 16:121–134

    Article  MATH  MathSciNet  Google Scholar 

  25. Toffoli T, Margolus N (1990) Invertible cellular automata: a review. Physica D 45:229–253

    Article  MATH  MathSciNet  Google Scholar 

  26. Kang QJ, Zhang DX, Lichtner PC, Tsimpanogiannis IN (2004) Lattice Boltzmann model for crystal growth from supersaturated solution. Res Lett 31:L21604

    Article  Google Scholar 

  27. Wang J, Wang M, Li Z (2007) A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer. Int J Therm Sci 46:228–234

    Article  Google Scholar 

  28. Wang M, Chen SY (2007) Electroosmosis in homogeneously charger micro- and nano-scale random porous media. J Colloid Interface Sci 314:264–273

    Article  Google Scholar 

  29. Jose AR, Salvador NM, Jesús GT (1996) Calculation of the effective diffusivity of heterogeneous media using the lattice-Boltzmann method. Phys Rev E 53:2298–2303

    Article  Google Scholar 

  30. Maxwell JC (1954) A treatise on electricity and magnetism, 3rd edn. Dover, New York

    MATH  Google Scholar 

  31. Nield DA (1991) Estimation of the stagnant thermal conductivity of saturated porous media. Int J Heat Mass Transf 34:1575–1576

    Article  Google Scholar 

  32. Guo ZL, Shi BC, Zheng CG (2002) A coupled lattice BGK model for Boussinesq equations. Int J Numer Methods Fluids 39:325–342

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhao K, Li Q, Xuan YM (2009) Investigation on the three-dimensional multiphase conjugate conduction problem inside porous wick with the lattice Boltzmann method. Sci Chin Ser E Technol Sci 52(10):2973–2980

    Article  MATH  Google Scholar 

  34. Shi MH, Li XC (2006) Determination of effective thermal conductivity for polyurethane foam by use of fractal method. Sci Chin Ser E Technol Sci 49:468–475

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Grant nos. 50478012, 50725620). The authors would like to thank the helpful discussions from Dr. J. Y. Xiong, and Prof. Y. P. Zhang about the VOCs problem. A special thanks is also given to Dr. Wang for his patient and useful discussions on the QSGS method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Xuan.

Additional information

Dedicated to Professor Dr. Ing. Dr. h.c. mult. Karl Stephan on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuan, Y.M., Zhao, K. & Li, Q. Investigation on mass diffusion process in porous media based on Lattice Boltzmann method. Heat Mass Transfer 46, 1039–1051 (2010). https://doi.org/10.1007/s00231-010-0687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0687-2

Keywords

Navigation