Skip to main content
Log in

Lattice Boltzmann Pore Scale Simulation of Natural Convection in a Differentially Heated Enclosure Filled with a Detached or Attached Bidisperse Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this research, pore scale simulation of natural convection in a differentially heated enclosure filled with a conducting bidisperse porous medium is investigated using the thermal lattice Boltzmann method. For the first time, the effect of connection of the bidisperse porous medium to the enclosure walls is studied by considering the attached geometry in addition to the detached one. Effect of most relevant parameters on the streamlines and isotherms as well as hot wall average Nusselt number is studied for two of the bidisperse porous medium configurations. It is observed that effect of geometrical and thermo-physical parameters of the bidisperse porous medium on the heat transfer characteristics is more complicated for the attached configuration. To assess the validity of the local thermal equilibrium condition in the micro-porous media, the pore scale results are used to compute the percentage of the local thermal non-equilibrium for two of the bidisperse porous medium configurations. It is concluded that for the detached configuration, the local thermal equilibrium condition is confirmed in the entire micro-porous media for the ranges of the parameters studied here. However, for the attached geometry, it is shown that departure from the local thermal equilibrium condition is observed for the higher values of the Rayleigh number, micro-porous porosity, solid–fluid thermal conductivity ratio, and the smaller values of the macro-pores volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

D :

Block size in the macro-pores (m)

\(D^{{*}}\) :

Dimensionless block size in the macro-pores, D / H [defined by Eq. (7)]

d :

Block size in the micro-porous (m)

\(d^{{*}}\) :

Dimensionless block size in the micro-porous, d / H [defined by Eq. (9)]

\(f_{i}\) :

Density distribution function

\(f_{i}^{\mathrm{eq}}\) :

Equilibrium distribution function of \(f_{i}\)

\(g_{i}\) :

Fluid energy distribution function

\(g_{i}^{\mathrm{eq}}\) :

Equilibrium distribution function of \(g_{i}\)

\(g_{\mathrm{si}}\) :

Solid blocks energy distribution function

\(g_{\mathrm{si}}^{\mathrm{eq}}\) :

Equilibrium distribution function of \(g_{\mathrm{si}}\)

H :

Enclosure side (m)

\(k_{\mathrm{f}}\) :

Fluid thermal conductivity (W/mK)

\(k_{\mathrm{s}}\) :

Solid thermal conductivity (W/mK)

\(N_{\mathrm{mac}}^{2}\) :

Number of blocks in the macro-pores

\(N_{\mathrm{mic}}^{2}\) :

Number of blocks in the micro-porous media

\(\overline{{Nu}}\) :

Average Nusselt number at the hot wall of the enclosure

\(\overline{{Nu}}_{\mathrm{mac}}\) :

Macro-pores hot wall average Nusselt number

\(\overline{{Nu}}_{\mathrm{mic}}\) :

Micro-porous media hot wall average Nusselt number

\(\Pr \) :

Prandtl number

Ra :

Rayleigh number [defined by Eq. (5)]

\(T_{\mathrm{f}}\) :

Fluid temperature (K)

\(T_{\mathrm{s}}\) :

Solid temperature (K)

\(\mathbf{V}=(u,v)\) :

Velocity vector (m/s)

\(\mathbf{V}^{{*}}=(u^{{*}},v^{{*}})\) :

Dimensionless velocity vector

xy :

Cartesian coordinates (m)

\(x^{{*}},y^{{*}}\) :

Dimensionless coordinates

\({\alpha }\) :

Thermal diffusivity \(({\hbox {m}^{2}}\)/s)

\({\delta }\) :

Clearance between the blocks and the enclosure walls (m)

\({\delta } x\) :

Lattice spacing

\({\delta } t\) :

Time step

\({\delta }^{{*}}\) :

Dimensionless clearance between the blocks and the enclosure walls

\({\varepsilon }_{\mathrm{mic}}\) :

Micro-porous porosity

\({\theta }\) :

Dimensionless temperature, [defined by Eq. (5)]

\({\theta }_{\mathrm{f}}\) :

Fluid dimensionless temperature

\({\theta }_{\mathrm{s}}\) :

Solid dimensionless temperature

\(\langle {\theta }_{\mathrm{s}}\rangle ^{\mathrm{s}}\) :

Solid intrinsic volume-averaged dimensionless temperature

\(\langle {\theta }_{\mathrm{f}}\rangle ^{\mathrm{f}}\) :

Fluid intrinsic volume-averaged dimensionless temperature

\({\lambda }\) :

Solid–fluid thermal conductivity ratio, \(k_{\mathrm{s}}/k_{\mathrm{f}}\)

\({\nu }_{\mathrm{f}}\) :

Fluid kinematic viscosity \((\hbox {m}^{2}/\hbox {s})\)

\({\rho }_{\mathrm{f}}\) :

Fluid density \(({\hbox {kg}}/{\hbox {m}^{{3}}})\)

\(({\rho } c_{p})_{\mathrm{f}}\) :

Fluid volumetric heat capacity \((\hbox {J}/{\hbox {Km}^{3}})\)

\(({\rho } c_{p})_{\mathrm{s}}\) :

Solid volumetric heat capacity \((\hbox {J}/{\hbox {Km}^{3}})\)

\({\tau }_{v}\) :

Fluid hydrodynamic dimensionless relaxation time

\({\tau }_{g}\) :

Fluid energy dimensionless relaxation time

\({\tau }_{gs}\) :

Solid dimensionless energy relaxation time

\({\varphi }_{\mathrm{mac}}\) :

Macro-pores volume fraction

f:

Fluid

s:

Solid

mac:

Macro-pores

mic:

Micro-porous

References

  • Bejan, A.: Convection Heat Transfer, 3rd edn. Wiley, New York (2004)

    Google Scholar 

  • Braga, E.J., de Lemos, M.J.S.: Heat transfer in enclosures having a fixed amount of solid material simulated with heterogeneous and homogeneous models. Int. J. Heat Mass Transf. 48(23–24), 4748–4765 (2005). doi:10.1016/j.ijheatmasstransfer.2005.05.016

    Article  Google Scholar 

  • Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998). doi:10.1146/annurev.fluid.30.1.329

    Article  Google Scholar 

  • Chen, Z.Q., Cheng, P., Hsu, C.T.: A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media. Int. Commun. Heat Mass Transf. 27(5), 601–610 (2000). doi:10.1016/s0735-1933(00)00142-1

    Article  Google Scholar 

  • D’Orazio, A., Succi, S.: Boundary conditions for thermal lattice Boltzmann simulations. In: Sloot, M.A.P., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (eds.) Computational Science—ICCS 2003, Pt I, Proceedings. Lecture Notes in Computer Science, vol. 2657, pp. 977–986 (2003)

  • Guo, Z.L., Zheng, C.G., Shi, B.C.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E (2002). doi:10.1103/PhysRevE.65.046308

    Google Scholar 

  • He, X., Chen, S., Doolen, G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146(1), 282–300 (1998). doi:10.1006/jcph.1998.6057

    Article  Google Scholar 

  • Hooman, K., Sauret, E., Dahari, M.: Theoretical modelling of momentum transfer function of bi-disperse porous media. Appl. Therm. Eng. 75, 867–870 (2015). doi:10.1016/j.applthermaleng.2014.10.067

    Article  Google Scholar 

  • House, J.M., Beckermann, C., Smith, T.F.: Effect of a centered conducting body on natural convection heat transfer in an enclosure. Numer. Heat Transf. Part A Appl. 18(2), 213–225 (1990). doi:10.1080/10407789008944791

    Article  Google Scholar 

  • Imani, G., Maerefat, M., Hooman, K.: Lattice Boltzmann simulation of conjugate heat transfer form multiple heated obstacles mounted in a walled paeallel plate channel. Numer. Heat Transf. Part A Appl. 62(10), 798–821 (2012). doi:10.1080/10407782.2012.709442

    Article  Google Scholar 

  • Imani, G., Maerefat, M., Hooman, K., Seddiq, M.: Lattice Boltzmann method for simulating conjugate heat transfer from an obstacle mounted in a parallel-plate channel with the use of three different heat input methods. Heat Transf. Res. 43(6), 545–572 (2012b)

    Article  Google Scholar 

  • Imani, G., Maerefat, M., Hooman, K.: Pore-scale numerical experiment on the effect of the pertinent parameters on heat fux splitting at the boundary of a porous medium. Transp. Porous Media 98(3), 631–649 (2013). doi:10.1007/s11242-013-0164-8

    Article  Google Scholar 

  • Khashan, S.A., Al-Amiri, A.M., Al-Namir, mA: Assessment of the local thermal non-equilibrium condition in developing forced convection flows through fluid-saturated porous tubes. Appl. Therm. Eng. 25, 1429–1445 (2005)

    Article  Google Scholar 

  • Meng, F., Wang, M., Li, Z.: Lattice Boltzmann simulations of conjugate heat transfer in high-frequency oscillating flows. Int. J. Heat Fluid Flow 29(4), 1203–1210 (2008). doi:10.1016/j.ijheatfluidflow.2008.03.001

    Article  Google Scholar 

  • Merrikh, A.A., Lage, J.L.: Natural convection in an enclosure with disconnected and conducting solid blocks. Int. J. Heat Mass Transf. 48(7), 1361–1372 (2005). doi:10.1016/j.ijheatmasstransfer.2004.09.043

    Article  Google Scholar 

  • Merrikh, A.A., Lage, J.L., Mohamad, A.A.: Natural convection in nonhomogeneous heat-generating media: comparison of continuum and porous-continuum models. J. Porous Media 8(2), 149–163 (2005). doi:10.1615/JPorMedia.v8.i2.40

    Article  Google Scholar 

  • Merrikh, A.A., Mohamad, A.A.: Transient natural convection in differentially heated porous enclosures. J. Porous Media 3(2), 165–178 (2000)

    Article  Google Scholar 

  • Merrikh, A.A., Mohamad, A.A.: Blockage effects in natural convection in differentially heated enclosures. J. Enhanc. Heat Transf. 8(1), 55–72 (2001)

    Article  Google Scholar 

  • Mohamad, A.A.: Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Code. Springer, New York (2011)

    Book  Google Scholar 

  • Narasimhan, A., Reddy, B.V.K.: Natural convection inside a bidisperse porous medium enclosure. J. Heat Transf. Trans. ASME (2010). doi:10.1115/1.3192134

    Google Scholar 

  • Narasimhan, A., Reddy, B.V.K.: Laminar forced convection in a heat generating bi-disperse porous medium channel. Int. J. Heat Mass Transf. 54(1–3), 636–644 (2011a). doi:10.1016/j.ijheatmasstransfer.2010.08.022

    Article  Google Scholar 

  • Narasimhan, A., Reddy, B.V.K.: Resonance of natural convection inside a bidisperse porous medium enclosure. J. Heat Transf. Trans. ASME (2011b). doi:10.1115/1.4001316

    Google Scholar 

  • Narasimhan, A., Reddy, B.V.K., Dutta, P.: Thermal management using the bi-disperse porous medium approach. Int. J. Heat Mass Transf. 55(4), 538–546 (2012). doi:10.1016/j.ijheatmasstransfer.2011.11.006

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Forced convection in a bi-disperse porous medium channel: a conjugate problem. Int. J. Heat Mass Transf. 47(24), 5375–5380 (2004). doi:10.1016/j.ijheatmasstransfer.2004.07.018

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: A two-velocity two-temperature model for a bi-dispersed porous medium: forced convection in a channel. Transp. Porous Media 59(3), 325–339 (2005). doi:10.1007/s11242-004-1685-y

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.: Thermally developing forced convection in a bidisperse porous medium. J. Porous Media 9(5), 393–402 (2006a)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The onset of convection in a bidisperse porous medium. Int. J. Heat Mass Transf. 49(17–18), 3068–3074 (2006). doi:10.1016/j.ijheatmasstransfer.2006.02.008

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Natural convection about a vertical plate embedded in a bidisperse porous medium. Int. J. Heat Mass Transf. 51(7–8), 1658–1664 (2008). doi:10.1016/j.ijheatmasstransfer.2007.07.011

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Forced convection in a channel partly occupied by a bidisperse porous medium: symmetric case. J. Heat Transf. Trans. ASME (2011). doi:10.1115/1.4003667

    Google Scholar 

  • Peng, Y., Shu, C., Chew, Y.T.: Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys. Rev. E (2003). doi:10.1103/PhysRevE.68.026701

    Google Scholar 

  • Rees, D.A.S., Nield, D.A., Kuznetsov, A.V.: Vertical free convective boundary-layer flow in a bidisperse porous medium. J. Heat Transf. Trans. ASME (2008). doi:10.1115/1.2943304

    Google Scholar 

  • Revnic, C., Grosan, T., Pop, I., Ingham, D.B.: Free convection in a square cavity filled with a bidisperse porous medium. Int. J. Therm. Sci. 48(10), 1876–1883 (2009). doi:10.1016/j.ijthermalsci.2009.02.016

    Article  Google Scholar 

  • Wang, J.L., Catton, I.: Biporous heat pipes for high power electronic device cooling In: Sventeenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium San Jose, pp. 211–218 (2001)

  • Zou, Q.S., He, X.Y.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997). doi:10.1063/1.869307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Imani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imani, G., Hooman, K. Lattice Boltzmann Pore Scale Simulation of Natural Convection in a Differentially Heated Enclosure Filled with a Detached or Attached Bidisperse Porous Medium. Transp Porous Med 116, 91–113 (2017). https://doi.org/10.1007/s11242-016-0766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0766-z

Keywords

Navigation