Skip to main content
Log in

Evaporation from Wavy Porous Surfaces into Turbulent Airflows

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The relief and roughness of natural surfaces interacting with airflows and with radiation affect rates and distributions of heat and vapor fluxes into the atmosphere. The study quantifies interactions of regular sinusoidal wavy porous surfaces (with different geometrical characteristics) affecting heat and vapor transport into prescribed turbulent airflows. A model for turbulent eddies interacting with an undulating evaporating surface with mean boundary layer that varies across sinusoidal wavy surfaces was developed and experimentally evaluated in a wind tunnel. The surface of a \(1\,\hbox {m}^{2}\) shallow (0.3 m deep) sand-filled basin was imprinted with regular sinusoidal ridges and troughs; water content and temperature sensors were embedded in the sand, and the instrumented basin was placed on a balance in the wind tunnel. Detailed thermal signatures of the evaporating surface for different wind speeds and surface patterns were obtained using high-resolution infrared thermography. The evaporative mass loss measurements and observed thermal patterns were in good agreement with model predictions for turbulent exchange over various wavy sand surface geometries. Results suggest that evaporative fluxes can be either enhanced or suppressed (relative to a flat surface) due to complex interplay between local boundary layer thickness and internal limitations to water flow to the evaporating surface. For a practical range of air velocities (0.5–4.0 m/s), and for sinusoidal configurations studied (amplitudes of 50–100 mm), the evaporative mass loss (relative to the flat surface) was reduced by up to 60 % for low surface aspect ratio and high wind velocity, and enhanced by up to 80 % for high aspect ratio and low wind velocity. The study offers a framework for interpreting and upscaling evaporative fluxes from rough terrestrial surfaces. Ongoing work considers shortwave radiation and geometrical interactions for a more complete account of surface energy balance and fluxes from natural rough surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A_\mathrm{b}\) :

Surface area of wavy building block \((\hbox {m}^{2})\)

\(C_\mathrm{a}\) :

Vapor concentration in air \((\hbox {kg/m}^{3})\)

\(C_\mathrm{s}\) :

Saturated vapor concentration \((\hbox {kg/m}^{3})\)

\(c_{1}\) :

Coefficient in Eq. (1) (–)

\(c_{2}\) :

Coefficient in Eq. (4) (–)

\(c_{3}\) :

Coefficient in Eq. (4) (–)

\(c_{4}\) :

Coefficient in Eq. (8) (–)

\(c_{p}\) :

Air-specific heat capacity (J/kg K)

D :

Water vapor diffusion coefficient in air \((\hbox {m}^{2}/\hbox {s})\)

E :

Evaporation flux \((\hbox {kg/m}^{2}\,\hbox {s})\)

\(E^\mathrm{o}\) :

Potential evaporation flux \((\hbox {kg/m}^{2}\,\hbox {s})\)

e :

Total evaporation rate (kg/s)

\(e_\mathrm{b}\) :

Evaporation rate from wavy building block (kg/s)

\(g_\mathrm{h}\) :

Aerodynamic conductance (m/s)

H :

Drying front depth (m)

\(H_\mathrm{C}\) :

Evaporative characteristic length (m)

\(H_\mathrm{G}\) :

Gravity characteristic length (m)

\(H_\mathrm{wt}\) :

Water table depth measured from ridges (m)

\(K_\mathrm{a}\) :

Air thermal conductivity (W/mK)

\(K_\mathrm{eff}\) :

Effective hydraulic conductivity (m/s)

\(K_\mathrm{s}\) :

Saturated hydraulic conductivity (m/s)

\(\ell \) :

Length of evaporating system (m)

\(M_\mathrm{w}\) :

Molar mass of water (kg/mol)

m :

Largest integer smaller than \(\alpha \) (–)

\(N_\mathrm{b}\) :

Number of wavy building blocks (–)

n :

Pore size distribution index (–)

\(P_\mathrm{sat}\) :

Saturated vapor pressure (Pa)

\(R_\mathrm{BL}\) :

Boundary layer resistance (s/m)

\(R_\mathrm{sv}\) :

Capillary–viscous resistance (s/m)

\(\hbox {Re}_\mathrm{K}\) :

Permeability Reynold number (–)

RH:

Relative humidity (–)

\(\mathfrak {R}\) :

Universal gas constant (J/mol K)

r :

Mean pore radius (m)

s :

Length of wavy building block (m)

\(T_\mathrm{a}\) :

Air temperature (K)

\(T_\mathrm{s}\) :

Surface temperature (K)

t :

Eddy residence time (s)

\(U_\mathrm{a}\) :

Air velocity (m/s)

w :

Width of wavy building block and evaporating system (m)

x :

Distance along x-axis (m)

\(x_\mathrm{r}\) :

Reattachment point (m)

\(x_\mathrm{s}\) :

Separation point (m)

\(Z_\mathrm{T}\) :

Height of trough above water table (m)

\(\alpha \) :

Shape parameter of eddy residence time distribution (–)

\(\alpha _\mathrm{s}\) :

\(\alpha \) over separation zone (–)

\(\chi \) :

Surface wetness-dependent coefficient of \(K_\mathrm{eff}\) (–)

\(\delta \) :

Viscous sublayer thickness (m)

\(\gamma \) :

Amplitude of wavy building block (m)

\(\lambda \) :

Wavelength of wavy building block (m)

v :

Air kinematic viscosity \((\hbox {m}^{2}/\hbox {s})\)

\(\Theta _\mathrm{surf}\) :

Effective surface water saturation (–)

\(\theta _\mathrm{r}\) :

Residual water content (–)

\(\theta _\mathrm{s}\) :

Saturated water content (–)

\(\theta _\mathrm{surf}\) :

Surface water content (–)

\(\rho \) :

Water density \((\hbox {kg/m}^{3})\)

\(\rho _\mathrm{a}\) :

Air density \((\hbox {kg/m}^{3})\)

\(\tau \) :

Tortuosity (–)

References

  • Allmaras, R.R., Nelson, W.W., Hallauer, E.A.: Fall versus spring plowing and related heat balance in western corn belt. Minn. Agric. Exp. Stn. Tech. Bull. 283, 1–22 (1972)

  • Almeida, G.P., Durao, D.F.G., Heitor, M.V.: Wake flows behind two-dimensional model hills. Exp. Therm. Fluid Sci. 7, 87–101 (1993). doi:10.1016/0894-1777(93)90083-U

    Article  Google Scholar 

  • Aminzadeh, M., Or, D.: Temperature dynamics during nonisothermal evaporation from drying porous surfaces. Water Resour. Res. 49 (2013). doi:10.1002/2013WR014384

  • Bange, G.G.J.: On the quantitative explanation of stomatal transpiration. Acta Bot. Neerl. 2(3), 255–296 (1953)

    Article  Google Scholar 

  • Baskaran, V., Smits, A.J., Joubert, P.N.: A turbulent flow over a curved hill Part 1. Growth on an internal boundary layer. J. Fluid Mech. 182, 47–83 (1987). doi:10.1017/S0022112087002246

    Article  Google Scholar 

  • Bradshaw, P.: Effects of streamline curvature on turbulent flow. Agardograph. AGARDograph 169, 1–131 (1973)

    Google Scholar 

  • Breugem, W.P., Boersma, B.J., Uittenbogaard, R.E.: The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 35–72 (2006). doi:10.1017/S0022112006000887

    Article  Google Scholar 

  • Bowers, S.A., Hanks, R.J.: Reflection of radiant energy from soils. Soil Sci. 100(2), 130–138 (1965). doi:10.1097/00010694-196508000-00009

    Article  Google Scholar 

  • Bristow, K.L., Campbell, G.S., Papendick, R.I., Elliott, L.F.: Simulation of heat and moisture transfer through a surface residue-soil system. Agric. For. Meteorol. 36, 193–214 (1986). doi:10.1016/0168-1923(86)90035-3

  • Brutsaert, W.: A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level. Water Resour. Res. 11(4), 543–550 (1975). doi:10.1016/0009-2509(73)85083-3

    Article  Google Scholar 

  • Buckles, J., Hanratty, T.J., Adrian, R.J.: Turbulent flow over large-amplitude wavy surfaces. J. Fluid Mech. 140, 27–44 (1984). doi:10.1017/S0022112084000495

    Article  Google Scholar 

  • Cherukat, P., Na, Y., Hanratty, T.J., McLaughlin, J.B.: Direct numerical simulation of a fully developed turbulent flow over a wavy wall. Theor. Comput. Fluid Dyn. 11, 109–134 (1998). doi:10.1007/s001620050083

    Article  Google Scholar 

  • Cierniewski, J., Karnieli, A., Kazmierowski, C., Krolewicz, S., Piekarczyk, J., Lewinska, K., Goldberg, A., Wesolowski, R., Orzechowski, M.: Effects of soil surface irregularities on the diurnal variation of soil broadband blue-sky albedo. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (2014). doi:10.1109/JSTARS.2014.2330691

  • Cooke, J.R.: Some theoretical considerations in stomatal diffusion: a field theory approach. Acta Biotheor. 17, 95–124 (1967). doi:10.1007/BF01625092

    Article  Google Scholar 

  • Danckwerts, P.V.: Significance of liquid-film coefficients in gas absorption. J. Ind. Eng. Chem. 43, 1460–1467 (1951). doi:10.1021/ie50498a055

    Article  Google Scholar 

  • Finnigan, J.J.: Air flow over complex terrain. In: Steffen, W.L., Denmead, O.T. (eds.) Flow and Transport in the Natural Environment: Advances and Applications, pp. 183–229. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  • Gaikovich, K.P.: Study of atmospheric-turbulence effects on the formation of a thermal film in the near-surface water layer and the dynamics of air–water heat exchange using measurements of thermal radio emission. Radiophys. Quantum Electron. 43(6), 469–477 (2000). doi:10.1007/BF02677174

    Article  Google Scholar 

  • Gill, K.S., Jalota, S.K., Prihar, S.S., Chaudhary, T.N.: Water conservation by soil mulch in relation to soil type, time of tillage, tilth and evaporativity. J. Ind. Soc. Soil Sci. 25, 360–366 (1977)

    Google Scholar 

  • Guzha, A.C.: Effects of tillage on soil microrelief, surface depression storage and soil water storage. Soil Tillage Res. 76, 105–114 (2004). doi:10.1016/j.still.2003.09.002

    Article  Google Scholar 

  • Haghighi, E., Shahraeeni, E., Lehmann, P., Or, D.: Evaporation rates across a convective air boundary layer are dominated by diffusion. Water Resour. Res. 49, 1602–1610 (2013). doi:10.1002/wrcr.20166

    Article  Google Scholar 

  • Haghighi, E., Or, D.: Evaporation from porous surfaces into turbulent airflows: coupling eddy characteristics with pore scale vapor diffusion. Water Resour. Res. 49, 8432–8442 (2013). doi:10.1002/2012WR013324

    Article  Google Scholar 

  • Haghighi, E., Or, D.: Thermal signatures of turbulent airflows interacting with evaporating thin porous surfaces. Int. J. Heat Mass Transf. 87, 429–446 (2015). doi:10.1016/j.ijheatmasstransfer.2015.04.026

    Article  Google Scholar 

  • Haghighi, E., Or, D.: Linking evaporative fluxes from bare soil across surface viscous sublayer with the Monin–Obukhov atmospheric flux-profile estimates. J. Hydrol. 525, 684–693 (2015). doi:10.1016/j.jhydrol.2015.04.019

    Article  Google Scholar 

  • Harriott, P.: A Random eddy modification of the penetration theory. Chem. Eng. Sci. 17, 149–154 (1962). doi:10.1016/0009-2509(62)80026-8

    Article  Google Scholar 

  • Hartmann, D.L.: Global Physical Climatology. Academic Press, San Diego (1994)

    Google Scholar 

  • Higbie, R.: The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. AIChE 31, 365–388 (1935)

    Google Scholar 

  • Holmes, J.W., Greacen, E.L., Gurr, G.C.: The evaporation of water from bare soils with different tilths. In: Transactions on 7th international congress of soil science, vol. 1, pp. 188–194. Madison, WI, International Society of Soil Science, Wageningen, The Netherlands (1960)

  • Jalota, S.K., Prihar, S.S.: Bare-soil evaporation in relation to tillage. In: Stewart, B.A. (ed.) Advances in Soil Science, vol. 12, pp. 187–216. Springer, New York (1990)

    Google Scholar 

  • Kalma, J.D., McVicar, T.R., McCabe, M.F.: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv. Geophys. 29, 421–469 (2008). doi:10.1007/s10712-008-9037-z

    Article  Google Scholar 

  • Kimball, B.A., Lemon, E.R.: Air turbulence effects upon soil gas exchange. Soil Sci. Soc. Am. J. 35, 16–21 (1971). doi:10.2136/sssaj1971.03615995003500010013x

    Article  Google Scholar 

  • Kruse, N., Kuhn, S., von Rohr, P.R.: Wavy wall effects on turbulence production and large-scale modes. J. Turbul. 7, 1–24 (2006). doi:10.1080/14685240600602911

    Article  Google Scholar 

  • Lehmann, P., Assouline, S., Or, D.: Characteristic lengths affecting evaporative drying of porous media. Phys. Rev. E 77(5), 056309 (2008). doi:10.1103/PhysRevE.77.056309

    Article  Google Scholar 

  • Lehrsch, G.A., Whisler, F.D., Römkens, M.J.M.: Soil surface roughness as influenced by selected soil physical properties. Soil Tillage Res. 10, 197–212 (1987). doi:10.1016/0167-1987(87)90028-6

    Article  Google Scholar 

  • Leij, F.J., Alves, W.J., van Genuchten, M.T., Williams, J.R.: The UNSODA unsaturated soil hydraulic database. In: van Genuchten, M.T., Leij, F.J., Wu, L. (eds. ) Proceedings of international workshop characterization and measurement of the hydraulic properties of unsaturated porous media, pp. 1269–1281, UC Riverside (1999)

  • Linden, D.R.: Predicting tillage effects on evaporation. In: Unger, P.W., Van Doren D.M. (eds.) Predicting Tillage Effects on Soil Physical Properties and Processes, vol. 44, American Society of Agronomy, Soil Science Society of America, ASA Special Publication, Madison, WI (1982)

  • Maaß, C., Schumann, U.: Direct numerical simulation of separated turbulent flow over a wavy boundary. In: Hirschel, E.H. (ed.) Flow Simulation with High Performance Computers, pp. 227–241. Vieweg, Braunschweig (1996)

    Chapter  Google Scholar 

  • Massman, W.J., Sommerfeld, R.A., Mosier, A.R., Zeller, K.F., Hehn, T.J., Rochelle, S.G.: A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of \(\text{ CO }_{2}\), \(\text{ N }_{2}\text{ O }\), and \(\text{ CH }_{4}\) through layered snowpacks. J. Geophys. Res. 102(D15), 18851–18863 (1997). doi:10.1029/97JD00844

    Article  Google Scholar 

  • Matthias, A.D., Fimbres, A., Sano, E.E., Post, D.F., Accioly, L., Batchily, A.K., Ferreira, L.G.: Surface roughness effects on soil albedo. Soil Sci. Soc. Am. J. 64, 1035–1041 (2000). doi:10.2136/sssaj2000.6431035x

    Article  Google Scholar 

  • McInnes, K.J., Heilman, J.L., Savage, M.J.: Aerodynamic conductances along a bare ridge-furrow tilled soil surface. Agric. For. Meteorol. 68, 119–131 (1994). doi:10.1016/0168-1923(94)90031-0

    Article  Google Scholar 

  • Meek, R.L., Baer, A.D.: The periodic viscous sublayer in turbulent flow. AIChE J. 16(5), 841–848 (1970). doi:10.1002/aic.690160525

    Article  Google Scholar 

  • Meek, R.L., Baer, A.D.: Turbulent heat transfer and the periodic viscous sublayer. Int. J. Heat Mass Transf. 16(7), 1385–1396 (1973). doi:10.1016/0017-9310(73)90146-4

    Article  Google Scholar 

  • Mira, M., Valor, E., Boluda, R., Caselles, V., Coll, C.: Influence of soil water content on the thermal infrared emissivity of bare soils: implication for land surface temperature determination. J. Geophys. Res. 112, F04003 (2007). doi:10.1029/2007JF000749

    Google Scholar 

  • Mirzaei, M., Davidson, L., Sohankar, A., Innings, F.: The effect of corrugation on heat transfer and pressure drop in channel flow with different Prandtl numbers. Int. J. Heat Mass Transf. 66, 164–176 (2013)

    Article  Google Scholar 

  • Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976). doi:10.1029/WR012i003p00513

    Article  Google Scholar 

  • Mwendera, E.J., Feyen, J.: Tillage and evaporativity effects on the drying characteristics of a silty loam: evaporation prediction models. Soil Tillage Res. 41, 127–140 (1997). doi:10.1016/S0167-1987(96)01078-1

    Article  Google Scholar 

  • Oke, T.R.: Boundary Layer Climates. Methuen, London (1978)

    Book  Google Scholar 

  • Penman, H.L.: Natural evaporation from open water, bare soil and grass. Proc. R. Soc. A. 193, 120–145 (1948). doi:10.1098/rspa.1948.0037

    Article  Google Scholar 

  • Perry, A.E., Schofield, W.H., Joubert, P.N.: Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383–413 (1969)

    Article  Google Scholar 

  • Popovich, A.T., Hummel, R.L.: Experimental study of the viscous sublayer in turbulent pipe flow. AIChE J. 13(5), 854–860 (1967). doi:10.1002/aic.690130509

    Article  Google Scholar 

  • Potter, K.N., Horton, R., Cruse, R.M.: Soil surface roughness effects on radiation reflectance and soil heat flux. Soil Sci. Soc. Am. J. 51, 855–860 (1987). doi:10.2136/sssaj1987.03615995005100040003x

    Article  Google Scholar 

  • Prat, M.: Recent advances in pore-scale models for drying of porous media. Chem. Eng. J. 86, 153–164 (2002). doi:10.1016/S1385-8947(01)00283-2

    Article  Google Scholar 

  • Qiu, G., Yano, T., Momii, K.: An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil. J. Hydrol. 210, 93–105 (1998). doi:10.1016/S0022-1694(98)00174-7

    Article  Google Scholar 

  • Qiu, G.Y., Zhao, M.: Remotely monitoring evaporation rate and soil water status using thermal imaging and “three-temperatures model (3T model)” under field-scale conditions. J. Environ. Monit. 12, 716–723 (2010). doi:10.1039/b919887c

    Article  Google Scholar 

  • Raupach, M.R., Wenig, W.S., Carruthers, D.J., Hunt, J.C.R.: Temperature and humidity fields and fluxes over low hills. Q. J. R. Meteorol. Soc. 118, 191–225 (1992). doi:10.1002/qj.49711850403

    Article  Google Scholar 

  • Raupach, M.R., Finnigan, J.J.: The influence of topography on meteorological variables and surface-atmosphere interactions. J. Hydrol. 190, 182–213 (1997). doi:10.1016/S0022-1694(96)03127-7

    Article  Google Scholar 

  • Raupach, M.R.: Drag and drag partition on rough surfaces. Bound. Lay. Meteorol. 60, 375–395 (1992). doi:10.1007/BF00155203

    Article  Google Scholar 

  • Reul, N., Branger, H., Giovanangeli, J.P.: Air flow structures over short-gravity breaking water waves. Bound. Lay. Meteorol. 126, 477–505 (2008). doi:10.1007/s10546-007-9240-3

    Article  Google Scholar 

  • Seo, Y.G., Lee, W.K.: Single-eddy model for random surface renewal. Chem. Eng. Sci. 43(6), 1395–1402 (1988). doi:10.1016/0009-2509(88)85112-1

    Article  Google Scholar 

  • Schlünder, E.U.: On the mechanism of the constant drying rate period and its relevance to diffusion controlled catalytic gas phase reactions. Chem. Eng. Sci. 43(10), 2685–2688 (1988). doi:10.1016/0009-2509(88)80012-5

    Article  Google Scholar 

  • Schultz, M.P., Flack, K.A.: Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21, 015104 (2009). doi:10.1063/1.3059630

    Article  Google Scholar 

  • Schwartz, R.C., Baumhardt, R.L., Evett, S.R.: Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Tillage Res. 110, 221–229 (2010). doi:10.1016/j.still.2010.07.015

    Article  Google Scholar 

  • Shahraeeni, E., Or, D.: Thermo-evaporative fluxes from heterogeneous porous surfaces resolved by infrared thermography. Water Resour. Res. 46(9), W09511 (2010). doi:10.1029/2009WR008455

    Google Scholar 

  • Shahraeeni, E., Lehmann, P., Or, D.: Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: characteristics of evaporation from discrete pores. Water Resour. Res. 48, W09525 (2012). doi:10.1029/2012WR011857

    Google Scholar 

  • Shokri, N., Lehmann, P., Vontobel, P., Or, D.: Drying front and water content dynamics during evaporation from sand delineated by neutron radiography. Water Resour. Res. 44, W06418 (2008). doi:10.1029/2007WR006385

    Google Scholar 

  • Shokri, N., Lehmann, P., Or, D.: Liquid phase continuity and solute concentration dynamics during evaporation from porous media-pore scale processes near vaporization surface. Phys. Rev. E. 81, 046308 (2010). doi:10.1103/PhysRevE.81.046308

    Article  Google Scholar 

  • Simpson, R.L.: Turbulent boundary-layer separation. Ann. Rev. Fluid Mech. 21, 205–234 (1989)

    Article  Google Scholar 

  • Taylor, P.A., Gent, P.R.: A model of atmospheric boundary layer flow above an isolated two-dimensional hill: an example of flow over gentle topography. Bound. Lay. Meteorol. I, 349–362 (1974). doi:10.1007/BF00240837

    Article  Google Scholar 

  • Tuoc, T.K., Keey, R.B.: A modified penetration theory and its relation to boundary layer transport. Trans. IChemE 70(A), 596–603 (1992)

    Google Scholar 

  • Unger, P.W., Cassel, D.K.: Tillage implement disturbance effects on soil properties related to soil and water conservation: a literature review. Soil Tillage Res. 19, 363–382 (1991). doi:10.1016/0167-1987(91)90113-C

    Article  Google Scholar 

  • van Brakel, J.: Mass transfer in convective drying. In: Mujumdar, A.S. (ed.) Advances in Drying, vol. 1, pp. 217–267. Hemisphere, New York (1980)

    Google Scholar 

  • van Genuchten, MTh: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980). doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Wagner, C., Kenjeres, S., von Rohr, P.R.: Dynamic large eddy simulations of momentum and wall heat transfer in forced convection over wavy surfaces. J. Turbul. 12, N7 (2011). doi:10.1080/14685248.2010.547496

    Article  Google Scholar 

  • Wieringa, J.: Representative roughness parameters for homogeneous terrain. Bound. Lay. Meteorol. 63, 323–363 (1993). doi:10.1007/BF00705357

    Article  Google Scholar 

  • Willis, W.O., Bond, J.J.: Soil water evaporation: reduction by simulated tillage. Soil Sci. Soc. Am. Proc. 35, 526–528 (1971). doi:10.2136/sssaj1971.03615995003500040016x

    Article  Google Scholar 

  • Yang, B.P.S., Blackwell, Nicholson, D.F.: A numerical model of heat and water movement in furrow-sown water repellent sandy soils. Water Resour. Res. 32(10), 3051–3061 (1996). doi:10.1029/96WR02103

    Article  Google Scholar 

  • Yiotis, A.G., Stubos, A.K., Boudouvis, A.G., Yortsos, Y.C.: A 2-D pore-network model of the drying of single-component liquids in porous media. Adv. Water Resour. 24, 439–460 (2001). doi:10.1016/S0309-1708(00)00066-X

    Article  Google Scholar 

  • Zilker, D.P., Hanratty, T.J.: Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech. 82, 29–51 (1977). doi:10.1017/S0022112077000524

    Article  Google Scholar 

  • Zilker, D.P., Hanratty, T.J.: Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2. Separated flows. J. Fluid Mech. 90, 257–271 (1979). doi:10.1017/S0022112079002196

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank three reviewers for their insightful comments that helped improve the manuscript. The funding by the Swiss National Science Foundation of the project “Evaporation from terrestrial surfaces—linking pore scale phenomena with landscape processes” (200021-113442) and the financial support of the German Research Foundation DFG of the project “Multi-Scale Interfaces in Unsaturated Soil” (MUSIS; FOR 1083) are gratefully acknowledged. Technical assistance of Daniel Breitenstein and Hans Wunderli (ETH Zurich) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfan Haghighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, E., Or, D. Evaporation from Wavy Porous Surfaces into Turbulent Airflows. Transp Porous Med 110, 225–250 (2015). https://doi.org/10.1007/s11242-015-0512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0512-y

Keywords

Navigation