Skip to main content
Log in

Influence on Pore Structure of Micro/Nanofibrillar Cellulose in Pigmented Coating Formulations

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Nano and microfibrillated cellulose (NFC and MFC, respectively, collectively termed MNFC) is known to interact strongly with water, related to its high polarity and surface area. The swelling behaviour acts to form a gel with high water retention properties. The observation that nanocellulose could possibly be used in paper or other coating formulations, as a co-binder, for example, raises a question about the possible effects it could have on coating pore structure. In this study, we analyse the pore structure of pigmented coatings, liquid absorption and permeability, in respect to the influence of partially substituting traditional co-binder carboxymethyl cellulose with MNFC. The contrast between polar water and non-polar liquid, such as alkane, is used to probe the water interactive and extractable in-coating (internal) gel-formation properties of the nanocellulosic materials. These contrasting liquids are important in many processes, such as offset printing, but also in respect to exposure of coatings in general to environmental factors in application. Results show that permeability to liquid water is dramatically reduced when nanocellulosic material is present, though water can permeate by diffusion through the nanocellulose gel network. Long timescale exposure to water during absorption leads to extraction of any soluble salts remaining after the chemical treatment of the fibrillar material during production. Inert alkane, on the other hand, can absorb and permeate freely without interactive hindrance from the nanocellulose, with no extractive effect. Such a construct could in principle be considered for use as an oil-water differential membrane or for slow release concepts in aqueous systems by loading soluble deliverable materials within the nanocellulosic gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Agoda-Tandjawa, G., Durand, S., Berot, S., Blassel, C., Gaillard, C., Garnier, C., Doublier, J.: Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr. Polym. 80, 677–686 (2010)

    Article  Google Scholar 

  • Agoda-Tandjawa, G., Durand, S., Gaillard, C., Garnier, C., Doublier, J.-L.: Rheological behaviour and microstructure of microfibrillated cellulose suspensions/low-methoxyl pectin mixed systems. Effect of calcium ions. Carbohydr. Polym. 87, 1045–1057 (2012)

    Article  Google Scholar 

  • Ahola, S., Myllytie, P., Österberg, M., Teerinen, T., Laine, J.: Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. BioResources 3, 1315–1328 (2008)

    Google Scholar 

  • Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Österberg, M., Wågberg, L.: Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25, 7675–7685 (2009)

    Article  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  Google Scholar 

  • Buchhammer, H., Petzold, G., Lunkwitz, K.: Salt effect on formation and properties of interpolyelectrolyte complexes and their interactions with silica particles. Langmuir 15, 4306–4310 (1999)

    Article  Google Scholar 

  • Cechova, M., Alince, B., van de Ven, T.: Stability of ground and precipitated \(\text{ CaCO }_{3}\) suspensions in the presence of polyethylene oxide and kraft lignin. Colloids Surf. A Physicochem. Eng. Asp. 141, 153–160 (1998)

    Article  Google Scholar 

  • Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M., Chen, P.: Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18, 433–442 (2011)

    Article  Google Scholar 

  • Decesari, S., Facchini, M., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A., Smith, D.: Water soluble organic compounds formed by oxidation of soot. Atmos. Environ. 36, 1827–1832 (2002)

    Article  Google Scholar 

  • Dimic-Misic, K., Puisto, A., Paltakari, J., Alava, M., Maloney, T.: The influence of shear on the dewatering of high consistency nanofibrillated cellulose furnishes. Cellulose 20, 1853–1864 (2013a)

    Article  Google Scholar 

  • Dimic-Misic, K., Puisto, A., Gane, P.A.C., Nieminen, K., Alava, M., Paltakari, J., Maloney, T.: The role of MFC/NFC swelling in the rheological behaviour and dewatering of high consistency furnishes. Cellulose 20, 2847–2861 (2013b)

    Article  Google Scholar 

  • Dimic-Misic, K., Gane, P.A.C., Paltakari, J.: Micro- and nanofibrillated cellulose as rheology modifier additive in CMC-containing pigment coating formulations. Ind. Eng. Chem. Res. 52, 16066–16083 (2013c)

    Article  Google Scholar 

  • Felix, J.M., Gatenholm, P.: The nature of adhesion in composites of modified cellulose fibers and polypropylene. J. Appl. Polym. Sci. 42, 609–620 (1991)

    Article  Google Scholar 

  • Ferrer, A., Quintana, E., Filpponen, I., Solala, I., Vidal, T., Rodríguez, A., Laine, J., Rojas, O.J.: Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19, 2179–2193 (2012)

    Article  Google Scholar 

  • Gane, P.A.C., Ridgway, C.J., Barcelo, E.: Analysis of pore structure enables improved tablet delivery systems. Powder Technol. 169, 77–83 (2006)

    Article  Google Scholar 

  • Gane, P.A.C., Kettle, J.P., Matthews, G.P., Ridgway, C.J.: Void space structure of compressible polymer spheres and consolidated calcium carbonate paper-coating formulations. Ind. Eng. Chem. Res. 35, 1753–1764 (1996)

    Article  Google Scholar 

  • Gane, P.A.C., Salo, M., Kettle, J.P., Ridgway, C.J.: Comparison of Young–Laplace pore size and microscopic void area distributions in topologically similar structures: a new method for characterising connectivity in pigmented coatings. J. Mater. Sci. 44, 422–432 (2009)

    Article  Google Scholar 

  • Gane, P.A.C., Ridgway, C.J., Lehtinen, E., Valiullin, R., Furo, I., Schoelkopf, J., Paulapuro, H., Daicic, J.: Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures. Ind. Eng. Chem. Res. 43, 7920–7927 (2004)

    Article  Google Scholar 

  • Gerstner, P., Paltakari, J., Gane, P.A.C.: A method for the measurement of thermal contact diffusivity of paper coating structures. Nordic Pulp Pap. J. 23, 354–362 (2008)

    Article  Google Scholar 

  • Ghanem, A., Higuchi, W., Simonelli, A.: Interfacial barriers in interphase transport II: influence of additives upon the transport of diethylphthalate across the hexadecane–gelatin–water interface. J. Pharm. Sci. 59, 232–237 (1970)

    Article  Google Scholar 

  • Gisler, T., Ball, R.C., Weitz, D.A.: Strain hardening of fractal colloidal gels. Phys. Rev. Lett. 82, 1064 (1999)

    Article  Google Scholar 

  • González, I., Boufi, S., Pèlach, M.A., Alcalà, M., Vilaseca, F., Mutjé, P.: Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7, 5167–5180 (2012)

    Google Scholar 

  • Husband, J.: Adsorption and rheological studies of sodium carboxymethyl cellulose onto kaolin: effect of degree of substitution. Colloids Surf. Physicochem. Eng. Asp. 134, 349–358 (1998)

    Article  Google Scholar 

  • Iwamoto, S., Abe, K., Yano, H.: The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9, 1022–1026 (2008)

    Article  Google Scholar 

  • Jäder, J., Järnström, L.: The influence of thickener addition on filter cake formation durning dewatering of mineral suspentions. Appl. Rheol. 13, 125–131 (2003)

    Google Scholar 

  • Kieweg, S.L., Katz, D.F.: Squeezing flows of vaginal gel formulations relevant to microbicide drug delivery. J. Biomech. Eng. 128, 540–553 (2006)

    Article  Google Scholar 

  • Klemm, D., Schumann, D., Kramer, F., Heßler, N., Koth, D., Sultanova, B.: Nanocellulose materials—different cellulose, different functionality. Macromol. Symp. 280, 60–71 (2009)

    Article  Google Scholar 

  • Laudone, G., Matthews, G., Gane, P.: Modelling diffusion from simulated porous structures. Chem. Eng. Sci. 63, 1987–1996 (2008)

    Article  Google Scholar 

  • Luu, W.T., Bousfield, D.W., Kettle, J.: Application of Nano-fibrillated Cellulose as a Paper Surface Treatment for Inkjet Printing, vol. 2, pp. 1152–1163. PaperCon 2011, Covington (2011)

  • McGenity, P., Gane, P.A.C., Husband, J., Engley, M.: Effects of interactions between coating color components and rheology. Water Retent. Run. 1992, 133 (1992)

    Google Scholar 

  • Mihranyan, A., Ferraz, N., Strømme, M.: Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci. 57, 875–910 (2012)

    Article  Google Scholar 

  • Morin, P., Beccard, B., Caude, M., Rosset, R.: Influence of temperature on FTIR spectra of various organic compounds analyzed by on-line carbon dioxide SFC/FTIR. J. High Resolut. Chromatogr. 11, 697–705 (1988)

    Article  Google Scholar 

  • Pääkko, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindström, T.: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8, 1934–1941 (2007)

    Article  Google Scholar 

  • Petersson, L., Oksman, K.: Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. Sci. Technol. 66, 2187–2196 (2006)

    Article  Google Scholar 

  • Richmond, F., Co, A., Bousfield, D.: The coating of nanofibrillated cellulose onto paper using flooded and metered size press methods. Proc. Technical Association of Pulp and Paper, Tappi PaperCon 2012, 12PaperCon/Papers/12PAP18 aspx. (2012)

  • Ridgway, C.J., Gane, P.A.C.: Constructing NFC-pigment composite surface treatment for enhanced paper stiffness and surface properties. Cellulose 19, 547–560 (2012)

    Article  Google Scholar 

  • Ridgway, C.J., Schoelkopf, J., Gane, P.A.C.: Competitive absorption of polar and non-polar liquids into latex bound porous structures of fine ground calcium carbonate. Transp. Porous Media 86, 945–964 (2011a)

    Article  Google Scholar 

  • Ridgway, C.J., Schoelkopf, J., Gane, P.A.C.: Response to isopropanol or ionic/non-ionic surfactant in the competitive imbibition of water and alkane into calcium carbonate structures. Nord. Pulp Pap. J. 26, 151–159 (2011b)

    Article  Google Scholar 

  • Ridgway, C.J., Gane, P.A.C., Schoelkopf, J.: Achieving rapid absorption and extensive liquid uptake capacity in porous structures by decoupling capillarity and permeability: nanoporous modified calcium carbonate. Transp. Porous Media 63, 239–259 (2006)

    Article  Google Scholar 

  • Ridgway, C.J., Gane, P.A.C.: Bulk density measurement and coating porosity calculation for coated paper samples. Nord. Pulp Pap. J. 18, 24–31 (2003)

    Article  Google Scholar 

  • Ridgway, C.J., Schoelkopf, J., Gane, P.A.C.: A new method for measuring the liquids permeability of coated and uncoated papers and boards. Nord. Pulp Pap. J. 18, 377–381 (2003)

    Article  Google Scholar 

  • Ridgway, C.J., Gane, P.A.C., Schoelkopf, J.: Modified calcium carbonate coatings with rapid absorption and extensive liquid uptake capacity. Colloids Surf. 236, 91–103 (2004)

    Article  Google Scholar 

  • Ridgway, C.J., Gane, P.A.C.: Size-selective absorption into pigmented coating structures: suspension starch polymer vs. nanofibrillar cellulose. Cellulose 20, 933–951 (2013)

    Article  Google Scholar 

  • Ridgway, C.J., Weihs, J., Grossmann, O., Hunziker, P., Gane, P.A.C.: Designing nanotechnology coatings for replacement of fibrous white top liner. Nord. Pulp Pap. J. 28, 560–572 (2013)

    Article  Google Scholar 

  • Saito, T., Nishiyama, Y., Putaux, J., Vignon, M., Isogai, A.: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7, 1687–1691 (2006)

    Article  Google Scholar 

  • Saito, T., Isogai, A.: TEMPO-mediated oxidation of native cellulose. Appita Annu. Conf. 3, 337–340 (2005)

    Google Scholar 

  • Sandås, S., Salminen, P.J., Eklund, D.: Measuring the water retention of coating colors. Tappi J. 72, 207–210 (1989)

    Google Scholar 

  • Schoelkopf, J., Ridgway, C.J., Gane, P.A.C., Matthews, G.P., Spielmann, D.C.: Measurement and network modeling of liquid permeation into compacted mineral blocks. J. Colloid Interface Sci. 227, 119–131 (2000)

    Article  Google Scholar 

  • Siqueira, G., Bras, J., Dufresne, A.: Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10, 425–432 (2008)

    Article  Google Scholar 

  • Siró, I., Plackett, D.: Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459–494 (2010)

    Article  Google Scholar 

  • Subramanian, R., Hiltunen, E., Gane, P.A.C.: Potential use of micro-and nanofibrillated cellulose composites exemplified by paper. In: Cellulose Fibers: Bio-and Nano-polymer Composites, pp. 121–150 (2011)

  • Sutandar, P., Ahn, D.J., Franses, E.I.: FTIR ATR analysis for microstructure and water uptake in poly(methyl methacrylate) spin cast and Langmuir–Blodgett thin films. Macromolecules 27, 7316–7328 (1994)

    Article  Google Scholar 

  • Syverud, K., Chinga-Carrasco, G., Toledo, J., Toledo, P.G.: A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr. Polym. 84, 1033–1038 (2011)

    Article  Google Scholar 

  • Taipale, T., Österberg, M., Nykänen, A., Ruokolainen, J., Laine, J.: Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17, 1005–1020 (2010)

    Article  Google Scholar 

  • Turbak, A.F., Snyder, F.W., Sandberg, K.R.: Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. 37, 815–827 (1983)

    Google Scholar 

  • Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)

    Article  Google Scholar 

  • Zimmermann, T., Bordeanu, N., Strub, E.: Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 79, 1086–1093 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Omya International AG for the support facilities in performing the porosimetry, absorption and permeation experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Dimic-Misic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimic-Misic, K., Ridgway, C., Maloney, T. et al. Influence on Pore Structure of Micro/Nanofibrillar Cellulose in Pigmented Coating Formulations. Transp Porous Med 103, 155–179 (2014). https://doi.org/10.1007/s11242-014-0293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0293-8

Keywords

Navigation