Skip to main content
Log in

Pretreatment with abscisic acid accompanied by sucrose improves callus survival after cryopreservation of hazel (Corylus avellana L.) by desiccation

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In the current study, a simple cryopreservation method (desiccation) was applied to Corylus avellana L. callus. Accordingly, the effects of abscisic acid (ABA) concentration, pretreatment duration on MS medium containing ABA + 10% sucrose, and storage length in liquid nitrogen (LN) on the callus survival rate were investigated. Calli’s survival was assessed 8 weeks after exiting from LN. Callus survival after cryopreservation was significantly affected by the concentration and duration of the treatment with ABA-supplemented media. However, storage duration in LN did not have an impact on the callus survival rate. In the present study, the highest survival rate (45.79%) was obtained in both treatments of 20 days preculture on medium containing 2 mg l− 1 ABA following 2 h desiccation-one day storage in LN and 2.5 h desiccation-thirty days storage in LN.

Key message

The desiccation method with the help of ABA and sucrose was an effective method in the successful cryopreservation of Corylus avellana L. callus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bestoso F, Ottaggio L, Armirotti A, Balbi A, Damonte G, Degan P, Mazzei M, Cavalli F, Ledda B, Mielle M (2006) In vitro cell cultures obtained from different explants of Corylus avellana produce Taxol and taxanes. BMC Biotechnol 6:45. https://doi.org/10.1186/1472-6750-6-45

    Article  CAS  Google Scholar 

  • Bian HW, Wang JH, Lin WQ, Han N, Zhu MY (2002) Accumulation of soluble sugars, heat-stable proteins and dehydrins in cryopreservation of protocorm-like bodies of Dendrobium candidum by the air-drying method. J Plant Physiol 159:1139–1145. https://doi.org/10.1078/0176-1617-00824

    Article  CAS  Google Scholar 

  • Burch J, Wilkinson T (2002) Cryopreservation of protonemata of Ditrichum cornubicum (Paton) comparing the effectiveness of four cryoprotectant pretreatments. CryoLett 23(3):197–208

    CAS  Google Scholar 

  • Burritt DJ (2008) Efficient cryopreservation of adventitious shoots of Begonia × erythrophylla using encapsulation–dehydration requires pretreatment with both ABA and proline. Plant Cell Tissue Org Cult 95:209–215. https://doi.org/10.1007/s007260170026

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. https://doi.org/10.1146/annurev-arplant-042809-112122

    Article  CAS  Google Scholar 

  • Danso KE, Ford-Lloyd BV (2004) Cryopreservation of embryogenic calli of cassava using sucrose cryoprotection and air desiccation. Plant Cell Rep 22(9):623–631. https://doi.org/10.1007/s00299-003-0727-1

    Article  CAS  Google Scholar 

  • Dumet D, Benson EE (2000) The use of physical and biochemical studies to elucidate and reduce cryopreservation-induced damage in hydrated/desiccated plant germplasm. In Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application. Japan Proceeding of an international workshop, Tsukuba/ International Plant Genetic Resources Institute, pp 43–56

  • Edesi J, Tolonen J, Ruotsalainen AL, Aspi J, Häggman H (2020) Cryopreservation enables long-term conservation of critically endangered species Rubus humulifolius. Biodivers Conserv 29:303–314. https://doi.org/10.1007/s10531-019-01883-9

    Article  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: Progress and prospects. Vitro Cel Dev Biol Plant 40:427–433. DOI: https://doi.org/10.1079/IVP2004541

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. Vitro Cel Dev Biol Plant 47(1):5–16. https://doi.org/10.1007/s11627-010-9327-2

    Article  Google Scholar 

  • Engelmann F, Engles J, Dullo E (2003) The development of complementary strategies for the conservation of plant genetic resources using in vitro and cryopreservation methods. In: Chaudhury R, Pandey R, Malik SK, Mal B (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 37–48

    Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 247:1–18. https://doi.org/10.1007/s00425-018-2910-1

    Article  CAS  Google Scholar 

  • Gibson DM, Ketchum REB, Vance NC, Christen AA (1993) Initiation and growth of cell lines of Taxus brevifolia (Pacifc yew). Plant Cell Rep 12:479–482. https://doi.org/10.1007/BF00236091

    Article  CAS  Google Scholar 

  • Giladi I, Altman A, Goren R (1977) Differential effects of sucrose, abscisic acid, and benzyladenine on shoot growth and callus formation in the abscission zone of excised citrus buds. Plant physiol 59(6):1161–1164. https://doi.org/10.1104/pp.59.6.1161

    Article  CAS  Google Scholar 

  • Gonzalez-Arnao MT, Panta A, Roca WM, Escobar RH, Engelmann F (2008) Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical. Plant Cell Tissue Org Cult 92:1–13. https://doi.org/10.1007/s11240-007-9303-7

    Article  Google Scholar 

  • Gonzalez-Benito ME, Perez C (1994) Cryopreservation of embryonic axes of two cultivars of hazelnut (Corylus avellana L.). Cryoletters CryoLett 15:41–46

    Google Scholar 

  • Hamzah S, Leene C (1986) Pollen storage of Hevea. J Nat Rubber Res 11:115–204

    Google Scholar 

  • Hargreaves CL, Grace LJ, Holden DG (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata Don embryogenic cell lines. Plant Cell Rep 21:40–44. https://doi.org/10.1007/s00299-002-0478-4

    Article  CAS  Google Scholar 

  • Hoffman A, Shahidi F (2009) Paclitaxel and other taxanes in hazelnut. J Funct Foods 1:33–37. https://doi.org/10.1016/j.jff.2008.09.004

    Article  CAS  Google Scholar 

  • Lu ZW, Popova EV, Wu CH, Lee EJ, Hahn EJ, Peak KY (2009) Cryopreservation of Ginkgo biloba cell culture: effect of pretreatment with sucrose and ABA. CryoLett 30(3):232–243

    Google Scholar 

  • Mandal BB, Dixit-Sharma S (2007) Cryopreservation of in vitro shoot tips of Dioscorea deltoidea Wall, an endangered medicinal plant: effect of cryogenic procedure and storage duration. CryoLett 28:461–470

    Google Scholar 

  • Martinez-Montero ME, González-Arnao MT, Borroto-Nordelo C, Puentes-Diaz C, Engelmann F (1998) Cryopreservation of sugarcane embryogenic callus using a simplified freezing process. CryoLett 19:171–176

    Google Scholar 

  • Mata-Rosas M, Lastre-Puertos E (2015) Long-term conservation of protocorms of Brassavola nodosa (L) Lind. (Orchidaceae): Effect of ABA and a range of cryoconservation techniques. CryoLett 36(5):289–298

    CAS  Google Scholar 

  • Meijer EGM, Van Iren F, Schrijnemakers EWM, Hensgens LAM, Zijderveld M, Schilperoort RA (1991) Retention of the capacity to produce plants from protoplasts in cryopreserved cell lines of rice (Oryza sativa L.). Plant Cell Rep 10:171–174. https://doi.org/10.1007/BF00234288

    Article  CAS  Google Scholar 

  • Michalak M, Plitta BP, Chmielarz P (2013) Desiccation sensitivity and successful cryopreservation of oil seeds of European hazelnut (Corylus avellana). Ann Appl Biol 163(3):351–358. https://doi.org/10.1111/aab.12059

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nebot A, Pritchard HW, Ballesteros D (2018) Desiccation tolerance and the hydration window for the cryopreservation of woody species’ pollen. Cryobiology 85:139

    Article  Google Scholar 

  • Ochatt S, Lambardi M, Panis B, Pathirana R, Revilla MA, Wang QC (2021) Cryopreservation and in vitro banking: a cool subject–Preface from the editors. Plant Cel Tissue Org Cult 144(1):1–5. https://doi.org/10.1007/s11240-020-01985-1

    Article  Google Scholar 

  • Panis B, Swennen R, Engelman F (2001) Cryopreservation of plant germplasm. Acta Hortic 650:79–86. https://doi.org/10.17660/ActaHortic.2001.560.8

    Article  Google Scholar 

  • Popova EV, Lee EJ, Wu CH, Hahn EJ, Paek KY (2009) A simple method for cryopreservation of Ginkgo biloba. Plant Cel Tissue Org Cult 97(3):337–343. https://doi.org/10.1007/s11240-009-9522-1

    Article  CAS  Google Scholar 

  • Popova E, Kim HH, Paek KY (2010) Cryopreservation of coriander (Coriandrum sativum L.) somatic embryos using sucrose preculture and air desiccation. Sci Horti 124:522–528. https://doi.org/10.1016/j.scienta.2010.02.012

    Article  CAS  Google Scholar 

  • Reed BM, Schumacher L, Dumet D, Benson EE (2005) Evaluation of a modified encapsulation-dehydration procedure in corporating sucrose pretreatments for the cryopreservation of Ribes germplasm. In Vitro Cel Dev Biol Plant 41:431–436. https://doi.org/10.1079/IVP2005664

    Article  Google Scholar 

  • Salehi M, Moieni A, Safaie N (2017) A novel medium for enhancing callus growth of hazel (Corylus avellana L.). Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-15703-z

    Article  CAS  Google Scholar 

  • Sgueglia A, Frattarelli A, Gentile A, Urbinati G, Lucioli S, Germanà MA, Caboni E (2021) Cryopreservation of hazelnut (Corylus avellana L.) axillary buds from in vitro shoots using the droplet vitrification method. Hortic 7(11):494. https://doi.org/10.3390/horticulturae7110494

    Article  Google Scholar 

  • Shukla M, Popova E, Saxena P (2016) Cryopreservation and in vitro multiplication of elite Canadian hazelnut germplasm. Cryobiol 3(73):405–406. https://doi.org/10.1016/j.cryobiol.2016.09.031

    Article  Google Scholar 

  • Stewart CR, Voetberg G (1985) Relationship between stress-induced ABA and proline accumulations and ABA-induced proline accumulation excised barley leaves. Plant Physiol 79:24–27. https://doi.org/10.1104/pp.79.1.24

    Article  CAS  Google Scholar 

  • Sun D, Yu YF, Qin HY, Xu PL, Zhao Y, Liu YX, Wang ZX, Fan ST, Yang YM, Ai J (2016) Cryopreservation of Schisandra chinensis (Turcz.) Baill callus and subsequent plant regeneration. Genet Mol Res. https://doi.org/10.4238/gmr15049342

    Article  Google Scholar 

  • Suzuki M, Ishikawa M, Okuda H, Noda K, Kishimoto T, Nakamura T, Ogiwara I, Shimura I, Akihama T (2006) Physiological changes in gentian axillary buds during two-step preculturing with sucrose that conferred high levels of tolerance to desiccation and cryopreservation. Ann Bot 97:1073–1081. https://doi.org/10.1093/aob/mcl054

    Article  CAS  Google Scholar 

  • Takagi H (2000) Recent development in cryopreservation of shoot apices of tropical species. In: Engelmann F, Tagaki H (eds) Cryopreservation of tropical plant germplasm. Current research progress and application. Japan International Research Center for Agricultural Sciences, Tsukuba/International Plant Genetic Resources Institute, Rome, pp 178–193

    Google Scholar 

  • Torello Marinoni D, Valentini N, Portis E, Acquadro A, Beltramo C, Mehlenbacher SA, Mockler TC, Rowley ER, Botta R (2018) High density SNP mapping and QTL analysis for time of leaf budburst in Corylus avellana L. PLoS ONE 13(4):e0195408. https://doi.org/10.1371/journal.pone.0195408

    Article  CAS  Google Scholar 

  • Turner S, Krauss SL, Bunn E, Senaratna T, Dixon K, Tan B, Touchell D (2001) Genetic fidelity and viability of Anigozanthos viridis following tissue culture, cold storage and cryopreservation. Plant Sci 161:1099–1106. https://doi.org/10.1016/S0168-9452(01)00519-2

    Article  CAS  Google Scholar 

  • Withers LA, Engels JMM (1990) The test tube genebank-a safe alternative to field conservation. IBPGR Newsl Asia Pac 3:1–2

    Google Scholar 

  • Wolkers wf, Hoekstra FA (2003) In situ FTIR assessment of desiccation tolerant tissues. Spectrosc 17:297–313

    Article  CAS  Google Scholar 

  • Yang Y, Yao N, Jia ZK, Duan J, Chen FJ, Sang ZY, Ma LY (2016) Effect of exogenous abscisic acid on cold acclimation in two Magnolia species. Biol Plant 60(3):555–562. https://doi.org/10.1007/s10535-016-0623-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research Deputy of Tarbiat Modares University, Tehran, for the financial support of this research project.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SMN carried out all experiments interpreted the results and wrote the manuscript. AM supervised the whole project by supplying the materials and equipments, designing the experiments, and editing the manuscript. AMB performed data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmad Moieni.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Qiao-Chun Wang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojarrad Nanas, S., Moieni, A. & Mokhtassi-Bidgoli, A. Pretreatment with abscisic acid accompanied by sucrose improves callus survival after cryopreservation of hazel (Corylus avellana L.) by desiccation. Plant Cell Tiss Organ Cult 152, 267–273 (2023). https://doi.org/10.1007/s11240-022-02401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02401-6

Keywords

Navigation