Skip to main content
Log in

Crosstalk between grapevine leafroll-associate virus-3 (GLRaV-3) and NaCl-induced salt stress in in vitro cultures of the red grape ‘Cabernet Sauvignon’

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Viral diseases (biotic stress) and salt stress (abiotic stress) are the two major stress factors limiting the sustainable development of the grape industry. These two stresses often occur simultaneously in many grape-growing regions. The present study investigated crosstalk between grapevine leafroll-associated virus-3 (GLRaV-3) and NaCl-induced salt stress in in vitro plantlets of the red-fruited grape ‘Cabernet Sauvignon’. Results showed that although the healthy plantlets had greater vegetative growth than the virus-infected plantlets when grown without salt stress, the latter produced better vegetative growth than the former when cultured under salt stress, indicating that the virus-infected plantlets were more tolerant to NaCl-induced salt stress than the healthy ones. Analyses of physiological metabolites found that contents of total soluble sugar and free proline were generally much higher in the latter than in the former under salt stress. The virus-infected plantlets responded to salt stress by significantly increasing activities of SOD, POD and CAT, compared with the healthy ones. Salt stress induced much higher levels of ABA in the virus-infected plantlets than the healthy ones. To the best of our knowledge, this is the first study reporting virus infection improves plant tolerance to salt stress. The results reported here provide new insights into better understanding of improvement of plant salt tolerance by virus infection.

Key message

The red-fruited grape 'Cabernet Sauvignon' infected with grapevine leafroll-associated virus-3 improved salt tolerance of the infected in vitro plantlets. In vitro culture system provided an alternative strategy for studying crosstalk between plants and combined stresses by abiotic and biotic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAT:

Catalase

POD:

Peroxidase

FW:

Fresh weight

ABA:

Abscisic acid

BM:

Basal medium

PVP:

Polyvinylpyrrolidone

NBT:

Nitroblue tetrazolium

SOD:

Superoxide dismutase

DAB:

3, 3’-diaminobenzidine

ROS:

Reactive oxygen species

PVPP:

Polyvinylpolypyrolidone

GLD:

Grapevine leafroll disease

MS:

Murashige and Skoog medium

EDTA:

Ethylenediaminetetraacetic acid

GLRaV-3:

Grapevine leafroll-associated virus-3

HPLC:

High performance liquid chromatography

RT-PCR:

Reverse transcription-polymerase chain reaction

References

  • Aguilarr E, Cutronar C, del Toro FJ, Vallarino JG, Osorio S, Perez-Bueno ML, Baron M, Chung BN, Canto T, Tenllado F (2017) Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. Plant Cell Environ 40:2909–2930

    Google Scholar 

  • Akbas B, Kunter B, Ilhan D (2009) Influence of leafroll on local grapevine cultivars in agroecological conditions of Central Anatolia region. Hortic Sci 36:97–104

    Google Scholar 

  • Alazem M, Lin NS (2017) Antiviral roles of abscisic acid in plants. Front Plant Sci 8:1760. DOI:https://doi.org/10.3389/fpls.2017.01760

    Article  PubMed  PubMed Central  Google Scholar 

  • Alazem M, Lin KY, Lin NS (2014) The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus Mol. Plant-Microbe Inter 27:177–189

    CAS  Google Scholar 

  • Alla MMN, Khedr AHA, Serag MM, Abu-Alnaga AZ, Nada RM (2012) Regulation of metabolomics in Atriplex halimus growth under salt and drought stress. Plant Growth Regul 67:281–304

    Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    CAS  PubMed  Google Scholar 

  • Bao WW, Zhang XC, Zhang AL, Zhao L, Wang QC, Liu ZD (2019) Validation of micrografting to evaluate drought tolerance in micrografts of kiwifruits (Actinidia spp.). Plant Cell Tiss Org Cult 140:291–300

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    CAS  Google Scholar 

  • Bertamini M, Muthuchelian K, Nedunchezhian N (2004) Effect of grapevine leafroll on the photosynthesis of field grown grapevine plants (Vitis vinifera L. cv. Lagrein). J Phytopathol 152:145–152

    CAS  Google Scholar 

  • Bi WL, Hao XY, Cui ZH, Pathirana R, Volk GM, Wang QC (2018) Shoot tip cryotherapy for efficient eradication of grapevine leafroll-associated virus-3 (GLRaV-3) from diseased in vitro plants. Ann Appl Biol 173:261–270

    CAS  Google Scholar 

  • Brar HS, Singh Z, Swinny E, Cameron I (2008) Girdling and grapevine leafroll-associated viruses affect berry weight, colour development and accumulation of anthocyanins in ‘Crimson Seedless’ grapes during maturation and ripening. Plant Sci 175:885–897

    CAS  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant–pathogen interactions. J Plant Res 124:489–499

    CAS  PubMed  Google Scholar 

  • Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Nat Acad Sci 110:E1963–E1971

    CAS  PubMed  Google Scholar 

  • Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Nat Acad Sci 111:6497–6502

    CAS  PubMed  Google Scholar 

  • Chojak-Koźniewska J, Kuźniak E, Zimny J (2018) The effects of combined abiotic and pathogen stress in plants: insights from salinity and Pseudomonas syringae pv lachrymans interaction in cucumber. Front Plant Sci 9:1691. DOI:https://doi.org/10.3389/fpls.2018.01691

    Article  PubMed  PubMed Central  Google Scholar 

  • Christov I, Stefanov D, Velinov T, Goltsev V, Georgieva K, Abracheva P (2007) The symptomless leaf infection with grapevine leafroll associated virus3 in grown in vitro plants as a simple model system for investigation of viral effects on photosynthesis. J Plant Physiol 164:1124–1133

    CAS  PubMed  Google Scholar 

  • Clarke SE, Guy PL, Burritt DJ, Jameson PE (2002) Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiolog Plant 114:157–164

    CAS  Google Scholar 

  • Cramer G, Ergül A, Grimplet J, Tillett RL, Elizabeth AR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, John C. Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Int Genomics 7:111–134

    CAS  Google Scholar 

  • Cramer G, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:1–14

    Google Scholar 

  • Cui Z-H, Bi W-L, Chen P, Xu Y, Wang Q-C (2015) Abiotic stress improves in vitro biological indexing of Grapevine leafroll-associated virus-3 in red grapevine cultivars. Aust J Grape Wine Res 21:490–495

    CAS  Google Scholar 

  • Cui Z-H, Bi W-L, Hao X-Y, Xu Y, Li P-M, Walker MA, Wang Q-C (2016) Responses of in vitro-grown plantlets (Vitis vinifera) to grapevine leafroll-associated virus-3 and PEG induced drought stress. Front Physiol 7:203. DOI:https://doi.org/10.3389/fphys.2016.00203

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Z-H, Bi W-L, Hao X-Y, Li P-M, Duan Y, Walker MA, Xu Y, Wang Q-C (2017) Drought stress enhances up-regulation of anthocyanin biosynthesis in grapevine leafroll-associated virus 3 infected in vitro grapevine (Vitis vinifera) leaves. Plant Dis 101:1606–1615

    CAS  PubMed  Google Scholar 

  • Cui Z-H, Agüero CB, Wang Q-C, Walker MA (2019) Validation of micrografting to identify incompatible interactions of rootstocks with virus-infected scions of Cabernet Franc. Aust J Grape Wine Res 25:268–275

    CAS  Google Scholar 

  • Edel KH, Kudla J (2016) Integration of calcium and ABA signaling. Curr Opin Plant Biol 33:83–91

    CAS  PubMed  Google Scholar 

  • El Aou-ouad H, Pou A, Tomas M, Montero R, Ribas-Carbo M, Medrano H, Bota J (2017) Combined effect of virus infection and water stress on water flow and water economy in grapevines. Physiol plant 160:171–184

    PubMed  Google Scholar 

  • El Aou-ouad H, Montero R, Medrano H, Bota J (2016) Interactive effects of grapevine leafroll-associated virus 3 (GLRaV-3) and water stress on the physiology of Vitis vinifera L. cv. Malvasia de Banyalbufar and Giro-Ros. J Plant Physiol 196–197:106–115

    PubMed  Google Scholar 

  • El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127. doi:https://doi.org/10.3389/fpls.2020.01127

    Article  PubMed  PubMed Central  Google Scholar 

  • Faraloni C, Cutino I, Petruccelli R, Leva AR, Lazzeri S, Torzillo G (2011) Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Oleaeuropaea L.) tolerant to drought stress. Environ Exp Bot 73:49–56

    CAS  Google Scholar 

  • Farissi M, Aziz F, Bouizgaren A, Ghoulam C (2014) Legume-rhizobia symbiosis under saline conditions: Agro-physiological and biochemical aspects of tolerance. Int J Innov Sci Res 11:96–104

    Google Scholar 

  • Fu QQ, Tan YZ, Zhai H, Du YP (2019) Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks. Sci Hortic 243:148–158

    CAS  Google Scholar 

  • Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L, Ou YB, Yao YA (2019) The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant 168:98–117

    PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Inter J Genom 701596. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Hao XY, Bi WL, Cui ZH, Pan C, Xu Y, Wang QC (2017) Development, histological observations and Grapevine leafroll-associated virus-3 localisation in in vitro grapevine micrografts. Ann Appl Biol 170:379–390

    CAS  Google Scholar 

  • Haq IU, Nazia P, Muhammad TR, Muhammad UD (2012) Comparative characteristics of micropropagated plantlets of banana from BBTV-infected explants to its normal and saline stressed cultures. Pak J Bot 44:1127–1130

    Google Scholar 

  • Haider MS, Jogaiah S, Pervaiz T, Zhao YX, Khan N, Fang JG (2019) Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environ Exp Bot 162:455–467

    CAS  Google Scholar 

  • Hernàndez JA, Rubio M, Olmos E, Ros Barceló A, Martinez–Gomez P (2004) Oxidative stress induced by long-term plum pox virus infection in peach (Prunus Persica). Physiol Plant 122:486–495

    Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    CAS  Google Scholar 

  • Jameson PE, Clarke SF (2002) Hormone-virus interactions in plants. Crit Rev Plant Sci 21:205–228

    CAS  Google Scholar 

  • Kaur G, Asthir B (2020) Impact of exogenously applied ABA on proline metabolism conferring drought and salinity stress tolerance in wheat genotypes. Cereal Res Com 48:309–315

    CAS  Google Scholar 

  • Li JW, Wang B, Song XM, Wang RR, Zhang H, Zhang ZB (2013) Potato leafroll virus (PLRV) and Potato virus Y (PVY) influence vegetative, physiological metabolism of in vitro-cultured shoots of potato (Solanum tuberosum L.). Plant Cell Tissue Organ Cult 114:313–324

    CAS  Google Scholar 

  • Li JW, Chen HY, Li J, Zhang ZB, Blystad DR, Wang QC (2018) Growth, microtuber production and physiological metabolism in virus-free and virus-infected potato in vitro plantlets grown under NaCl-induced salt stress. Eur J Plant Pathol 152:417–432

    CAS  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295. doi:https://doi.org/10.3389/fpls.2017.00295

    Article  PubMed  PubMed Central  Google Scholar 

  • Lokhande VH, Nikam TD, Penna S (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 102:17–25

    Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 104:41–49

    CAS  Google Scholar 

  • Ma X, Zheng J, Zhang X, Hu Q, Qian R (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600. https://doi.org/10.3389/fpls.2017.00600

    Article  PubMed  PubMed Central  Google Scholar 

  • Mannini F, Mollo A, Credi R (2012) Field performance and wine quality modification in a clone of Vitis vinifera cv. ‘Dolcetto’ after GLRaV-3 elimination. Am J Enol Vitic 63:144–147

    CAS  Google Scholar 

  • Mansour MMF, Ali EF (2017) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68

    CAS  PubMed  Google Scholar 

  • Maree HJ, Almeida RPP, Bester R, Chooi KM, Cohen D, Dolja VV, Fuchs MF, Golino DA, Jooste AEC, Martelli GP, Naidu RA, Rowhani A, Saldarelli P, Burger J (2013) Grapevine leafroll-associated virus 3. Front Microbiol 4:82. doi:https://doi.org/10.3389/fmicb.2013.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martelli (2017) An overview on grapevine viruses, viroids, and the diseases they cause. In Meng BZ, Martelli GP, Golino DA, Fuchs M (eds), Grapevine Viruses: Molecular Biology, Diagnostics and Management, Springer International Publishing AG, pp:31–46

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    CAS  PubMed  Google Scholar 

  • Mohammadkhani N, Heidari R, Abbaspour N, Rahmani F (2014) Evaluation of salinity effects on ionic balance and compatible solute contents in nine grape (Vitis L.) genotypes. J Plant Nutr 37:1817–1836

    CAS  Google Scholar 

  • Moutinho-Pereira J, Correia CM, Gonclve B, Bacelar EA, Coutinho JF, Ferreira HF (2012) Impacts of leafroll-associated viruses (GLRaV-1 and – 3) on the physiology of the Portuguese grapevine cultivar ‘Touriga Nacional’ growing under field conditions. Ann Appl Biol 160:237–249

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cell cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Naidu RA, Maree HJ, Burger JT (2015) Grapevine leafroll disease and associated viruses: A unique pathosystem. Annu Rev Phytopathol 53:613–634

    CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M, Rahman A, Alam MM, Mahmud J-A, Suzuki T, Fujita M (2016) Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front Plant Sci 7:1104. doi:https://doi.org/10.3389/fpls.2016.01104

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu M, Xie J, Chen C, Cao H, Sun J, Kong Q, Shabala S, Shabala L, Huang Y, Bie Z (2018) An early ABA-induced stomatal closure, Na + sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. J Exp Bot 69:4945–4960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    CAS  PubMed  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasch CM (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Jiménez M, Pérez-Tornero O (2020) In vitro plant evaluation trial: reliability test of salinity assays in citrus plants. Plants 9:1352. doi:https://doi.org/10.3390/plants9101352

    Article  CAS  PubMed Central  Google Scholar 

  • Radi AA, Farghaly FA, Hamada AM (2013) Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J Biol Earth Sci 3:B72–B88

    Google Scholar 

  • Radwan DEM, Fayez KA, Mahmoud SY, Hamad A, Lu GQ (2007) Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiol Biochem 45:480–489

    CAS  PubMed  Google Scholar 

  • Redillas MCFR, Park SH, Lee JW, Kim YS, Jeong JS, Jung H, Bang SW, Hahn TR, Kim JK (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6:89–96

    Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Google Scholar 

  • Ryu H, Cho YG (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155

    CAS  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571. doi:https://doi.org/10.3389/fpls.2016.00571

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampol B, Bota J, Riera D, Medrano H, Flexas J (2003) Analysis of the virus-induced inhibition of photosynthesis in malmsey grapevines. New Phytol 160:403–412

    CAS  Google Scholar 

  • Santo A, Orrù M, Sarigu M, Ucchesu M, Saua S, Lallai A, D’hallewin G, Bacchetta G (2019) Salt tolerance of wild grapevine seeds during the germination phase. Sci Hortic 255:115–120

    CAS  Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotech Lett 24:721–725

    CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving Salinity Tolerance in Cereals. Crit Rev Plant Sci 23:237–249

    Google Scholar 

  • Sohrabi S, Ebadi A, Jalali S, Salami SA (2017) Enhanced values of various physiological traits and VvNAC1 gene expression showing better salinity stress tolerance in some grapevine cultivars as well as rootstocks. Sci Hort 225:317–326

    CAS  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trend Plant Sci 15:289–297

    Google Scholar 

  • Vega A, Gutiérrez RA, Peña-Neira A, Cramer GR, Arce-Johnson P (2011) Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera. Plant Mol Biol 77:261–274

    CAS  PubMed  Google Scholar 

  • Wani AS, Ahmad A, Hayat S, Tahir I (2016) Is foliar spray of proline sufficient for mitigation of salt stress in Brassica juncea cultivars? Environ Sci Pollut Res 23:13413–13423

    CAS  Google Scholar 

  • Xu LL, Xiang GQ, Sun QH, Ni Y, Jin ZX, Gao SW, Yao YX (2019) Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic Res 6:114. doi:https://doi.org/10.1038/s41438-019-0197-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921

    PubMed  Google Scholar 

  • Yang S, Yu Q, Zhang Y, Jia Y, Wan S, Kong X, Ding Z (2018) ROS: the fine-tuner of plant stem cell fate. Trend Plant Sci 23:850–853

    CAS  Google Scholar 

  • Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G (2020) How plant hormones mediate salt stress responses. Trend Plant Sci 25:1117–1130

    CAS  Google Scholar 

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    CAS  Google Scholar 

  • Zörb Ch G, Mühling Ch-M, Ludwig-Müller CH J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170:220–224

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2018YFD1000300), National Natural Science Foundation of China (Grant No. 31972374) and Shaanxi Province Key Research and Development Program (2018ZDXMNY 053 − 1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaochun Wang or Yan Xu.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Jiao, B., Liu, Z. et al. Crosstalk between grapevine leafroll-associate virus-3 (GLRaV-3) and NaCl-induced salt stress in in vitro cultures of the red grape ‘Cabernet Sauvignon’. Plant Cell Tiss Organ Cult 144, 649–660 (2021). https://doi.org/10.1007/s11240-020-01987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01987-z

Keywords

Navigation