Skip to main content

Advertisement

Log in

Ectopic expression of AmNAC1 from Avicennia marina (Forsk.) Vierh. confers multiple abiotic stress tolerance in yeast and tobacco

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Abiotic factors like salinity, drought and cold affect agricultural productivity substantially worldwide. NAC (NAM, ATAF1/2 and CUC2) family transcription factors have been shown to play important roles in biotic and abiotic stress responses in many plant species. Our previous studies have shown that AmNAC1, a gene from mangrove Avicennia marina, is differentially regulated in response to salt, drought and cold stresses and salicylic acid treatment. To gain more insights into the function of AmNAC1 in abiotic stress, AmNAC1 was heterologously expressed in yeast and tobacco. Heterologous expression of AmNAC1 in yeast (Saccharomyces cerevisiae) resulted in improved tolerance to salinity (NaCl and LiCl), alkalinity (NaHCO3) stresses. In addition, transgenic yeast exhibited enhanced tolerance compared to control when subjected to high (50 °C) and freezing (− 20 °C) temperature. Similarly, overexpression of AmNAC1 in tobacco using the constitutive promoter (2xCaMV) demonstrated increased tolerance to abiotic stresses such as salinity, drought and cold. Specifically, compared to wild type (WT) and vector control (VC), AmNAC1 transgenic lines exhibited higher germination, increased root length and better survival rates at the whole plant level. Collectively, these results indicate a role for AmNAC1 in multiple abiotic stress tolerance.

Key message

AmNAC1 is a stress responsive transcription factor from mangrove Avicennia marina and enhances better tolerance to NaCl, NaHCo3, LiCl, freezing and high temperature in transgenic yeast. Over expression of AmNAC1 in tobacco improved salt, cold and drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmad M, Yan X, Li J et al (2018) Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears. BMC Plant Biol 18:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alshareef NO, Rey E, Khoury H, Tester M et al (2019a) Genomewide identification of NAC transcription factors and their role in abiotic stress tolerance in Chenopodium quinoa. https://doi.org/10.1101/693093

  • Alshareef NO, Wang JY, Ali S et al (2019b) Overexpression of the NAC transcription factor JUNGBRUNNEN1 (JUB1) increases salinity tolerance in tomato. Plant Physiol Biochem 140:113–121

    Article  CAS  PubMed  Google Scholar 

  • Bajji M, Kinet J, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Ball M (1998) Mangrove species richness in relation to salinity and waterlogging: a case study along the Adelaide River floodplain, northern Australia. Glob Ecol Biogeogr Lett 7:73–82

    Article  Google Scholar 

  • Breathnach R, Benoist C, O’hare K et al (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci USA 75:4853–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collart MA, Oliviero S (1993) Preparation of yeast RNA. Curr Protoc Mol Biol 23:12–13

    Article  Google Scholar 

  • Deng X, Wang J, Wang J et al (2018) Two HbHsfA1 and HbHsfB1 genes from the tropical woody plant rubber tree confer cold stress tolerance in Saccharomyces cerevisiae. Braz J Bot 41:711–724

    Article  Google Scholar 

  • Diao W, Snyder J, Wang S et al (2018) Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.): chromosome location, phylogeny, structure, expression patterns, cis-elements in the promoter, and interaction network. Int J Mol Sci 19:1028

    Article  PubMed Central  CAS  Google Scholar 

  • Ganesan G, Sankararama subramanian HM, Jithesh M, Narayanan et al (2008) Transcript level characterization of a cDNA encoding stress regulated NAC transcription factor in the mangrove plant Avicennia marina. Plant Physiol Biochem 46:928–934

    Article  CAS  PubMed  Google Scholar 

  • Ganesan G, Sankararama Subramanian HM, Harikrishnan M, Ashwin G et al (2012) A MYB transcription factor from the grey mangrove is induced by stress andconfers NaCl tolerance in tobacco. J Exp Bot 63:4549–4561

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Xiong A, Peng R et al (2010) OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tissue Org Cult 100:255–262

    Article  CAS  Google Scholar 

  • Ge Y, Li Y, Lv DK et al (2011) Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Funct Integr Genom 11(2):369–379

    Article  CAS  Google Scholar 

  • Guan QJ, Wang LF, Bu QY et al (2014) The rice gene OsZFP6 functions in multiple stress tolerance responses in yeast and Arabidopsis. Plant Physiol Biochem 82:1–8

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Li S, Tian S et al (2017) Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphusacidojujuba). PLoS ONE 12(10):e0185732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Z, Li Z, Lu H et al (2019) The NAC protein from Tamarix hispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability. Plants (Basel Switzerland) 8:221

    CAS  Google Scholar 

  • Hong Y, Zhang H, Huang L et al (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:1–19

    Article  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL et al (1985) A simple and general method for transferring genes to plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hossain MD, Nuruddin AA (2016) Soil and mangrove: a review. J Environ Sci Technol 9:198–207

    Article  Google Scholar 

  • Hu H, Dai M, Yao J et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, You J, Fang Y et al (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287

    Article  CAS  PubMed  Google Scholar 

  • Kavitha K, Usha B, George S et al (2010a) Molecular characterization of a salt-inducible monodehydroascorbate reductase from the halophyte Avicennia marina. Int J Plant Sci 171:457–465

    Article  CAS  Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010b) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Kumar MA, Ganesan G, Rama SSHM, Ajay P (2018) NAC transcription factor differentially regulated by abiotic stresses and salicylic acid in the mangrove plant Avicennia marina (Forsk.) Vierh. Res J Biotechnol 13:65–71

    CAS  Google Scholar 

  • Li X, Zhang D, Li H et al (2014) EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremospartonsongoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 14:1–16

    Article  Google Scholar 

  • Lin Q, Lu J, Yanagisawa H et al (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574

    CAS  PubMed  Google Scholar 

  • Lindemose S, O’Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Wang B, Li Z, Peng Z et al (2018) TsNAC1 Is a key transcription factor in abiotic stress resistance and growth. Plant Physiol 176:742–756

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Ma Z, Sun W et al (2019) Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrumtataricum). BMC Genom 20:113

    Article  Google Scholar 

  • Liu ZJ, Li F, Wang LG et al (2018) Molecular characterization of a stress-induced NAC gene, GhSNAC3, from Gossypium hirsutum. J Genet 97:539–548

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Mao X, Zhang H, Qian X et al (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng C, Cai C, Zhang T, Guo W (2009) Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci 176:352–359

    Article  CAS  Google Scholar 

  • Michiels A, Van Den Ende W, Tucker M et al (2003) Extraction of high-quality genomic DNA from latex-containing plants. Anal Biochem 315:85–89

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM et al (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    Article  CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio L, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  CAS  PubMed  Google Scholar 

  • Ooka H, Ooka H, Satoh K et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thalinana . DNA Res 247:239–247

    Article  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice varPusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shang H, Li W, Zou C, Yuan Y (2013) Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns. J Integr Plant Biol 55:663–676

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Lv B, Luo L et al (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Hu M, Li J et al (2018) Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biol 18:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li Z, Lu M, Wang Y et al (2017) ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci 8:635

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Wang Y, Zhang D et al (2008) Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses. J For Res 19:58–62

    Article  CAS  Google Scholar 

  • Wang C, Gao C, Wang L et al (2014) Comprehensive transcriptional profiling of NaHCO3-stressed Tamarix hispida roots reveals networks of responsive genes. Plant Mol Biol 84:145–157

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2006) Transformation of Agrobacterium using the freeze-thaw method. CSH Protoc 2006:4666

    Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H et al (2012) JUNGBRUNNEN1, a reactive oxygenspecies-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang X, Ji L et al (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34:943–958

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Li M, Li D et al (2019) Transcriptome analysis reveals regulatory framework for salt and osmotic tolerance in a succulent xerophyte. BMC Plant Biol 19:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y et al (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Wang H, Cai J et al (2019) Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol 19:278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Kang H, Su C et al (2018) Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry. PLoS ONE 13:e0197892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Li D, Wang Y et al (2018) Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum. PLoS ONE 13:e0199262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Żmieńko A, Samelak A, Kozłowski P, Figlerowicz M (2014) Copy number polymorphism in plant genomes. Theor Appl Genet 127:1–18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr.G.N.Hariharan (M.S. Swaminathan Research Foundation, India), Dr. H.M. Sankararamasubramanian and Dr. Chad Ternes (Colorado State University, USA) for the comments and suggestions. Financial support from the SERB (Project File No. YSS/2015/000015), India is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Govindan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Francisco de Assis Alves Mourão Filho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugesan, A.K., Somasundaram, S., Mohan, H. et al. Ectopic expression of AmNAC1 from Avicennia marina (Forsk.) Vierh. confers multiple abiotic stress tolerance in yeast and tobacco. Plant Cell Tiss Organ Cult 142, 51–68 (2020). https://doi.org/10.1007/s11240-020-01830-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01830-5

Keywords

Navigation