Skip to main content
Log in

Validation of micrografting to evaluate drought tolerance in micrografts of kiwifruits (Actinidia spp.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Drought-tolerant rootstocks have been used to improve production efficiency of graft-propagated crops. Kiwifruit is a high-valued fruit crop of the world. Drought stress widely occurs in many of kiwifruit-growing regions including China. The present study used micrografting for evaluation of drought tolerance in four kiwifruit cultivars micrografted on the drought-tolerant rootstock MX1. When stressed by PEG-induced drought, the micrografted kiwifruit cultivars showed significant differences in accumulation of ROS (O·−2 and H2O2), physiological metabolism (total soluble sugar, total soluble protein and free proline), activities of antioxidants (SOD and CAT), endogenous ABA levels and expression levels of ABA biosynthetic genes (DREB1 and DREB2). Drought tolerance of the micrografts varied with the four kiwifruit cultivars, with the highest and lowest drought tolerance found in ‘Yuxiang’ and ‘Hayward’, respectively. Micrografting provides an alternative strategy for fast and efficient evaluation of drought tolerance of plant cultivars, thus assisting sustainable development of production of the graft-propagated plant species.

Key message

In vitro micrografting provided a fast and efficient approach to evaluate drought tolerance of kiwifruit, and has potential applications to other graft-propagated plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albacete A, Martínez-Andújar C, Martínez-Pérez A, Thompson AJ, Dodd IC, Pérez-Alfocea F (2015) Unravelling rootstock × scion interactions to improve food security. J Exp Bot 66(8):2211–2226

    Article  CAS  Google Scholar 

  • Bao WW, Zhang XC, Zhang AL, Zhao L, Wang QC, Liu ZD (2019) Validation of micrografting to analyze compatibility, shoot growth, and root formation in micrografts of kiwifruit (Actinidia spp.). Plant Cell Tiss Org Cult. https://doi.org/10.1007/s11240-019-01723-2

    Article  Google Scholar 

  • Baron D, Amaro ACE, Pina A, Ferreira G (2019) An overview of grafting re-establishment in woody fruit species. Sci Horticult 243:84–91

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Black MZ, Patterson KJ, Minchin PEH, Gould KS, Clearwater MJ (2011) Hydraulic responses of whole vines and individual roots of kiwifruit (Actinidia chinensis) following root severance. Tree Physiol 31:508–518

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen JY, Fang JB, Qi XJ, Gu H, Lin MM, Zhang WY, Wei CG (2015) Research progress on rootstocks of kiwifruit. J Fruit Sci 32:959–968

    Google Scholar 

  • Clearwater MJ, Lowe RG, Hofstee BJ, Barclay C, Mandemaker AJ, Blattmann P (2004) Hydraulic conductance and rootstock effects in grafted vines of kiwifruit. J Exp Bot 55:1371–1381

    Article  CAS  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  Google Scholar 

  • Cruz CJ, Lawes GS, Woolley DJ, Ganesh S (1997) Evaluation of rootstock and ‘Hayward’ scion effects on field performance of kiwifruit vines using a multivariate analysis technique. NZJ Crop Horticult Sci 25:273–282

    Article  Google Scholar 

  • Cui Z-H, Bi W-L, Hao X-Y, Xu Y, Li PM, Walker MA, Wang Q-C (2016) Responses of in vitro-grown plantlets (Vitis vinifera) to grapevine leafroll-associated virus-3 and PEG-induced drought stress. Front Physiol 7:203. https://doi.org/10.3389/fphys.2016.00203

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Z-H, Agüero CB, Wang Q-C, Walker MA (2019) Validation of micrografting to identify incompatible interactions of rootstocks with virus-infected scions of Cabernet Franc. Aust J Grape Wine Res 25:268–275

    Article  CAS  Google Scholar 

  • Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA, Delrot S, Cookson SJ (2019) Merging genotypes: graft union formation and scion-rootstock interactions. J Exp Bot 70:747–755

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Surendra C, Sabat SC, Tuteja N (2015) Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environ Sci Poll Res. https://doi.org/10.1007/s11356-015-4532-5

    Article  Google Scholar 

  • Gonçalves LP, Camargo QLB, Takita MA, Machado MA, Filho WSS, Costa MGC (2019) Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq. BMC Genomics 20:110. https://doi.org/10.1186/s12864-019-5481-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao X-Y, Bi W-L, Cui Z-H, Pan C, Xu Y, Wang Q-C (2017) Development histological observations and grapevine leafroll-associated virus-3 localisation in in vitro grapevine micrografts. Ann Appl Biol 170:379–390

    Article  CAS  Google Scholar 

  • Huang H, Ferguson AR (2001) Review: kiwifruit in China. NZJ Crop Horti Sci 29:1–14

    Article  Google Scholar 

  • Jonard R (1986) Micrografting and its applications to tree improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Trees I. Springer-Verlag, Berlin, pp 31–48

    Google Scholar 

  • Judd MJ, McAneney KJ, Wilson KS (1989) Influence of water-stress on kiwifruit growth. Irrig Sci 10:303–311

    Article  Google Scholar 

  • Keunen E, Peshev D, Vangronsveld J, Ende WVD, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell Environ 36:1242–1255

    Article  CAS  Google Scholar 

  • King SR, Davis AR, Zhang X, Crosby K (2010) Genetics breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci Horticult 127:106–111

    Article  Google Scholar 

  • Koepke T, Dhingra A (2013) Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Rep 32:1321–1337

    Article  CAS  Google Scholar 

  • Kumar P, Rouphael Y, Cardarelli M, Colla G (2017) Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front Plant Sci 8:1130. https://doi.org/10.3389/fpls.2017.01130

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trend Plant Sci 23:513–522

    Article  CAS  Google Scholar 

  • Li J-W, Chen H-Y, Li J, Zhang Z, Blystad D-R, Wang Q-C (2018) Growth, microtuber production and physiological metabolism in virus-free and virus-infected potato in vitro plantlets grown under NaCl-induced salt stress. Euro J Plant Pathol 152:417–432

    Article  CAS  Google Scholar 

  • Liu J, Li J, Su X, Xia Z (2014) Grafting improves drought tolerance by regulating antioxidant enzyme activities and stress-responsive gene expression in tobacco. Environ Exp Bot 107:173–179

    Article  CAS  Google Scholar 

  • Liu SS, Li H, Lv X, Ahammed GL, Xia XJ, Zhou J, Shi K, Asami T, Yu J, Zhou Y (2016) Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Sci Rep 6:20212. https://doi.org/10.1038/srep20212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • López-Serrano L, Canet-Sanchis G, Selak VG, Penella C, Bautista S, López-Galarza S, Calatayud Á (2019) Pepper rootstock and scion physiological responses under drought stress. Front Plant Sci 10:38. https://doi.org/10.3389/fpls.2019.00038

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cell cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Turkan I (2009) Physiochemical and antioxidant responsesof the perennial xerophyte Capparis ovata Desf. to drought. Environ Exp Bot 66:487–492

    Article  CAS  Google Scholar 

  • Penella C, Nebauer SG, Bautista AS, López-Galarza S, Calatayud Á (2014) Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses. J Plant Physiol 171:842–851

    Article  CAS  Google Scholar 

  • Penella C, Nebauer SG, López-Galarza S, Quiñones A, Bautista AS, Calatayud Á (2017) Grafting pepper onto tolerant rootstocks: an environmental-friendly technique overcomes water and salt stress. Sci Horticult 226:33–41

    Article  Google Scholar 

  • Ren J, Mao J, Zuo C, Calderón-Urrea A, Dawuda MM, Zhao X, Li X, Chen B (2017) Significant and unique changes in phosphorylation levels of four phosphoproteins in two apple rootstock genotypes under drought stress. Mol Genet Genom 292:1307–1322

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Blasco B, Leyva R, Romero L, Ruiz JM (2012) Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Sci 188–189:89–96

    Article  Google Scholar 

  • Santana-Vieira DDS, Freschi L, da Hora Almeida LA, Moraes DHS, Neves DM, Santos LM, Bertolde FZ, Filho WSS, Filho MAC, Gesteira AS (2016) Survival strategies of citrus rootstocks subjected to drought. Sci Rep 2016:38775. https://doi.org/10.1038/srep38775

    Article  CAS  Google Scholar 

  • Santos IC, de Almeida AAF, Pirovani CP, Costa MGC, da Conceição AS, Filho WSS, Filho MAC, Gesteir AS (2019) Physiological, biochemical and molecular responses to drought conditions in field-grown grafted and ungrafted citrus plants. Environ Exp Bot 162:406–420

    Article  CAS  Google Scholar 

  • Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Horticult 127:162–171

    Article  CAS  Google Scholar 

  • Sivritepe N, Erturp U, Yerlikaya C, Turkan I, Bor M, Ozdemir F (2008) Response of the cherry rootstock to water stress induced in vitro. Biol Plant 52:573–576

    Article  CAS  Google Scholar 

  • Tsutsui H, Notaguchi M (2017) The use of grafting to study systemic signaling in plants. Plant Cell Physiol 58:1291–1301

    Article  CAS  Google Scholar 

  • Vallurua R, Van den Ende W (2011) Myo-inositol and beyond-emerging networks under stress. Plant Sci 181:387–400

    Article  Google Scholar 

  • Wang Y, Ma F, Li M, Liang D, Zou J (2011) Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regul 64:63–74

    Article  CAS  Google Scholar 

  • Wang Y, Zhao C-L, Li J-Y, Liang Y-J, Yang R-Q, Liu J-Y, Ma Z, Wu L (2018) Evaluation of biochemical components and antioxidant capacity of different kiwifruit (Actinidia spp.) genotypes grown in China. Biotechnol Biotechnol Equip 32:558–565

    Article  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhang Y, Chen Q, Lan J, Luo Y, Wang X, Chen Q, Sun B, Wang Y, Gong R, Tang H (2018) Effects of drought stress and rehydration on physiological parameters and proline metabolism in kiwifruit seedling. Inter J Agri Biol. https://doi.org/10.17957/ijab/15.0852

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiao-Chun Wang or Zhan-De Liu.

Additional information

Communicated by Ranjith Pathirana.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, WW., Zhang, XC., Zhang, AL. et al. Validation of micrografting to evaluate drought tolerance in micrografts of kiwifruits (Actinidia spp.). Plant Cell Tiss Organ Cult 140, 291–300 (2020). https://doi.org/10.1007/s11240-019-01727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01727-y

Keywords

Navigation