Skip to main content
Log in

Validation of micrografting to analyze compatibility, shoot growth, and root formation in micrografts of kiwifruit (Actinidia spp.)

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The present study described a micrografting method for kiwifruits and evaluated graft-compatibility, shoot growth, and root formation and growth of the micrografts. Although time durations of callus formation and initiation of new cambial cells varied with the scion cultivars, vascular bundles were established at about day 21 of micrografting in the four kiwifruit scion cultivars tested. Early callus formation and initiation of new cambial cells promoted bud break in the scions and root formation in rootstocks. These promotive effects enhanced shoot growth, and root formation and growth of the micrografts. This micrografting method has potential for micropropagation of kiwifruit.

Key message

Shoot growth, and root formation and growth of the micrografts varied with the scion cultivars. Micrografting method has potential for micropropagation of kiwifruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abousalim A, Mantell SH (1992) Micrografting of pistachio (Pistacia vera L. cv. Mateur). Plant Cell Tiss Org Cult 29:231–234

    Article  Google Scholar 

  • Albacete A, Martínez-Andújar C, Martínez-Pérez A, Thompson AJ, Dodd IC, Pérez-Alfocea F (2015) Unravelling rootstock × scion interactions to improve food security. J Exp Bot 66:2211–2226

    Article  CAS  Google Scholar 

  • Baron D, Amaro ACE, Pina A, Ferreira G (2019) An overview of grafting re-establishment in woody fruit species. Sci Hortic 243:84–91

    Article  Google Scholar 

  • Black MZ, Patterson KJ, Minchin PEH, Gould KS, Clearwater MJ (2011) Hydraulic responses of whole vines and individual roots of kiwifruit (Actinidia chinensis) following root severance. Tree Physiol 31:508–518

    Article  Google Scholar 

  • Chen G, Fu X, Lips SH, Sagi M (2003) Control of plant growth resides in the shoot, and not in the root, in reciprocal grafts of flacca and wild-type tomato (Lysopersicon esculentum), in the presence and absence of salinity stress. Plant Soil 256:205–215

    Article  CAS  Google Scholar 

  • Chen J-Y, Fang J-B, Qi X-J, Gu H, Lin M-M, Zhang W-Y, Wei C-G (2015) Research progress on rootstocks of kiwifruit. J Fruit Sci 32:959–968

    Google Scholar 

  • Cui Z-H, Agüero CB, Wang Q-C, Walker MA (2019) Validation of micrografting to identify incompatible interactions of rootstocks with virus-infected scions of Cabernet Franc. Aust J Grape Wine Res 25:268–275

    Article  CAS  Google Scholar 

  • Du Y, Zhao Q, Li S, Yao X, Xie F, Zhao M (2019) Shoot/root interactions affect soybean photosynthetic traits and yield formation: a case study of grafting with record-yield cultivars. Front Plant Sci 10:445. https://doi.org/10.3389/fpls.2019.00445

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumanoğlu H, Çelik A, Büyükkartal HN, Dousti S (2014) Morphological and anatomical investigations on in Vitro Micrografts of OHxF 333/Pyrus elaeagrifolia interstock/rootstock combination in pears. J Agric Sci 20:269–279

    Google Scholar 

  • Espen L, Cocucci M, Sacchi GA (2005) Differentiation and functional connection of vascular elements in compatible and incompatible pear/quince internode micrografts. Tree Physiol 25:1419–1425

    Article  CAS  Google Scholar 

  • Estrada-Luna AA, López-Peralta C, Cárdenas-Soriano E (2002) In vitro micrografting and the histology of graft union formation of selected species of prickly pear cactus (Opuntia spp.). Sci Hortic 92:317–327

    Article  Google Scholar 

  • Faccioli G (1998) Marani F (1998) Virus elimination by meristem tip culture and tip micrografting. In: Hadidi A, Khetarpal RK, Koganzawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 346–380

    Google Scholar 

  • Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA, Delrot S, Cookson SJ (2019) Merging genotypes: graft union formation and scion-rootstock interactions. J Exp Bot 70:747–755

    Article  Google Scholar 

  • Guan W, Zhao X, Hassell R, Thies J (2012) Defense mechanisms involved in disease resistance of grafted vegetables. HortScience 47:164–170

    Article  CAS  Google Scholar 

  • Hao X-Y, Bi W-L, Cui Z-H, Pan C, Xu Y, Wang Q-C (2017) Development, histological observations and Grapevine leafroll-associated virus-3 localisation in in vitro grapevine micrografts. Ann Appl Biol 170(2017):379–390

    Article  CAS  Google Scholar 

  • Harrison N, Barber-Perez N, Pennington B, Cascant-Lopez E, Gregory PJ (2016) Root system architecture in reciprocal grafts of apple rootstock-scion combinations. Acta Hortic 1130:409–414

    Article  Google Scholar 

  • Huang H, Ferguson AR (2001) Review: kiwifruit in China. NZ J Crop Hortic Sci 29:1–14

    Article  Google Scholar 

  • Jonard R (1986) Micrografting and its applications to tree improvement. In: Baja YPS (ed) Biotechnol agric and for trees I. Springer, Berlin, pp 31–48

    Google Scholar 

  • Juarez J, Aleza P, Navarro L (2015) Applications of citrus shoot-tip grafting in vitro. Acta Hortic 1065:635–642

    Article  Google Scholar 

  • Judd MJ, McAneney KJ, Wilson KS (1989) Influence of water-stress on kiwifruit growth. Irrig Sci 10:303–311

    Article  Google Scholar 

  • Koepke T, Dhingra A (2013) Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Rep 32:1321–1337

    Article  CAS  Google Scholar 

  • Kumar P, Rouphael Y, Cardarelli M, Colla G (2017) Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front Plant Sci 8:1130. https://doi.org/10.3389/fpls.2017.01130

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Ballesta MC, Alcaraz-López C, Muries B, Mota-Cadenas C, Carvajal M (2010) Physiological aspects of rootstock–scion interactions. Sci Hortic 127:112–118

    Article  Google Scholar 

  • Miguelez-Sierra Y, Hernández-Rodríguez A, Acebo-Guerrero Y, Baucher M, Jaziri MEI (2016) In vitro micrografting of apical and axillary buds of Cacao. J Hortic Sci Biotechol 92:1. https://doi.org/10.1080/14620316.2016.1215231

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cell cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murashige T, Bitters WP, Rangan TS, Nauer EM, Roistachek CN, Holliday PB (1972) A technique of shoot apex grafting and its utilization towards recovering virus-free citrus clones. HortScience 7:118–119

    Google Scholar 

  • Navarro L, Roistacher CN, Murashige T (1975) Improvement of shoot-tip grafting in vitro for virus-free citrus. J Am Soc Hortic Sci 100:471–479

    Google Scholar 

  • Panattoni A, Luvisi A (2013) Triolo E (2013) Elimination of viruses in plants: twenty years of progress. Span J Agri Res 11:173–188

    Article  Google Scholar 

  • Pathirana R, McKenzie MJ (2005) Early detection of grapevine leafroll virus in Vitis vinifera using in vitro micrografting. Plant Cell Tiss Org Cult 81:11–18

    Article  Google Scholar 

  • Pina A, Errea P (2005) A review of new advances in mechanism of graft compatibility–incompatibility. Sci Horti 106:1–11

    Article  Google Scholar 

  • Ribeiro LM, Nery LA, Vieira LM, Mercadante-Simöes MO (2015) Histological study of micrografting in passionfruit. Plant Cell Tiss Org Cult 123:173–181

    Article  Google Scholar 

  • Singh H, Kumar P, Chaudhari S, Edelstein M (2017) Tomato grafting: a global perspective. HortScience 52:1328–1336

    Article  Google Scholar 

  • Tandonnet JP, Cookson SJ, Vivin P, Ollat N (2010) Scion genotype controls biomass allocation and root development in grafted grapevine. Aust J Grape Wine Res 16:290–300

    Article  Google Scholar 

  • Tsutsui H, Notaguchi M (2017) The use of grafting to study systemic signaling in plants. Plant Cell Physiol 58:1291–1301

    Article  CAS  Google Scholar 

  • Volk GM, Bonnart R, Krueger R, Lee R (2012) Cryopreservation of Citrus shoot tips using micrografting for recovery. Cryoletters 33:418–426

    CAS  PubMed  Google Scholar 

  • Wang R-R, Mou H-Q, Gao X-X, Bi W-L, Chen L, Huo L-Q, Wang Q-C (2014) Cryopreservation for eradication of Jujube witches’ broom phytoplasma from Chinese jujube (Ziziphus jujuba). Ann Appl Biol 166:218–228

    Article  Google Scholar 

  • Wang J, Jiang L, Wu R (2017) Plant grafting: how genetic exchange promotes vascular reconnection. New Phytol 214:56–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiao-Chun Wang or Zhan-De Liu.

Additional information

Communicated by Maurizio Lambardi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, WW., Zhang, XC., Zhang, AL. et al. Validation of micrografting to analyze compatibility, shoot growth, and root formation in micrografts of kiwifruit (Actinidia spp.). Plant Cell Tiss Organ Cult 140, 209–214 (2020). https://doi.org/10.1007/s11240-019-01723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01723-2

Keywords

Navigation