Skip to main content
Log in

Growth and physiological alterations related to root-specific gene function of LrERF061-OE in Glycyrrhiza uralensis Fisch. hairy root clones under cadmium stress

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Abiotic stresses, particularly heavy metals, are a threat to living organisms, including plants. Heavy metals activate ethylene biosynthesis and ultimately stimulate reactive oxygen species (ROS)-related gene expression to enhance stress tolerance. The identification and functional analysis of such stress-related genes is very important to increase the stress tolerance of valuable plants to heavy metals. Ethylene responsive factor ERF061 belongs to the ERF transcription factor family, controls plant growth and ontogenesis and regulates abiotic stress in model plant species. Therefore, in this study, we examined the tolerance function of LrERF061 via an overexpression vector in the growth and physiology of G. uralensis hairy roots under cadmium (Cd) stress. The effect of different Cd concentrations (0, 25, 50, 75, 100 mg/L) on the growth and physiology of LrERF061-OE hairy roots (LrE-HR) and control hairy roots (LrC-HR) of G. uralensis was measured. Initially, at low cadmium concentrations, there was a stimulating effect of Cd on G. uralensis LrE-HR and LrC-HR. However, at high cadmium doses, the growth of LrC-HR was retarded compared to that of LrE-HR. Intriguingly, a significant increase was observed in the relative expression level of LrERF061-OE in LrE-HR at 100 mg/L Cd. According to the results, compared to LrC-HR (11 mg/g), LrE-HR showed maximum Cd uptake (81 mg/g) at high Cd concentrations. The antioxidant enzyme activities (SOD, CAT and POD) in LrE-HR were enhanced at high Cd concentrations compared to those in LrC-HR. This work first highlighted the effect of LrERF061-OE, which is upregulated under Cd stress in G. uralensis hairy root clones, on heavy metal tolerance.

Key message

Current study for the first time aimed to evaluate effect of ethylene responsive transcription factor (LrERF061) under Cd stress on growth and physiological properties of Glycyrrhiza uralensis hairy root clones.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie Weinhem, New York

    Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Hairy roots of Medicago truncatula as tools for studying nitrogen fixing and endomycorrhizal symbioses. Mol Plant Microbe Interact 14:693–700

    Google Scholar 

  • Chahel AA, Zeng S, Yousaf Z, Liao Y, Yang Z, Wei X, Ying W (2018) Plant-specific transcription factor LrTCP4 enhances secondary metabolite biosynthesis in Lycium ruthenicum hairy roots. Plant Cell, Tissue Organ Cult (PCTOC) 136(2):232–337. https://doi.org/10.1007/s11240-018-1518-2

    Article  CAS  Google Scholar 

  • Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371

    CAS  Google Scholar 

  • Charfeddine M, Charfeddine S, Bouaziz D, Messaoud RB, Bouzid RG (2017) The effect of cadmium on transgenic potato (Solanum tuberosum) plants overexpressing the StDREB transcription factors Plant Cell. Tissue Organ Cult (PCTOC) 128:521–541. https://doi.org/10.1007/s11240-016-1130-2

    Article  CAS  Google Scholar 

  • Cheng M, Lowe BAS, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol 40:31–45

    Google Scholar 

  • Chmielowska-Bak J, Gzyl J, Rucinska-Sobkowiak R, Arasimowicz-Jelonek M, Joanna Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245

    PubMed  PubMed Central  Google Scholar 

  • Cuypers A, Smeets K, Vangronsveld J (2009) Heavy metal stress in plants, in plant stress biology. From genomics to systems biology. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  • DeBoer KD, Lye JC, Aitken CD, Su AK-K, Hamill JD (2009) The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis. Plant Mol Biol 69(3):299

    CAS  PubMed  Google Scholar 

  • Dirican E, Turkez H (2014) In vitro studies on protective effect of Glycyrrhiza glabra root extracts against cadmium-induced genetic and oxidative damage in human lymphocytes. Cytotechnology 66:9–16

    PubMed  Google Scholar 

  • Doran P (2002) Properties and applications of hairy root cultures. In: Oksman-Caldentey KM, Barz WH( (eds) Plant biotechnology and transgenic plants. Marcel Dekker Inc, New York

    Google Scholar 

  • Farinati S, DalCorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185(4):964–978

    CAS  PubMed  Google Scholar 

  • Gaudin V, Varin T, Jouanin L (1994) Bacterial genesmodifying hormonal balances in plants. Plant Physiol Biochem 32:11–29

    CAS  Google Scholar 

  • Guillon S, Trémeouillax-Guiller J, Pea Pati (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    CAS  PubMed  Google Scholar 

  • Handa N, Kohli SK, Thukral AK, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2018) Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotech 8(1):66. https://doi.org/10.1007/s13205-018-1087-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Gill SS, Alharby HF, Razafindrabe BHN, Fujita M (2017) Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems. Front Plant Sci 8:115. https://doi.org/10.3389/fpls.2017.00115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Wang Y, Wu Y, Li W (2006) Effects of light and plant growth regulators on growth of normal and hairy root of Lycium barbarum in vitro. China J Chin Mater Med 31(2):106–110

    Google Scholar 

  • Jacob A, Malpathak N (2005) Manipulation of MS and B5 components for enhancement of growth and solasodine production in hairy root cultures of Solanum khasianum Clarke Plant Cell. Tissue Organ Cult 80:247–257

    CAS  Google Scholar 

  • Jalmi SK et al (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:12. https://doi.org/10.3389/fpls.2018.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jingjing K et al (2019) Maize factors ZmUBP15, ZmUBP16 and ZmUBP19 plays important role for plants to tolerance the cadmium stress and salt stress. Plant Sci 280:77–89

    Google Scholar 

  • Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287

    CAS  PubMed  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18. https://doi.org/10.1016/j.jplph.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  • Li C, Potuschak T, Colón-Carmona A, Gutiérrez RA, Doerner P (2005) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102(36):12978–12983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Liao B, Zhou H, Zhang Y, Zeng M, Huang Y, Zeng Q (2010) Main characteristics of physiological–ecological dynamics of soybean during the growth cycle under Cd stress. Acta Ecol Sin 30:333–340

    CAS  Google Scholar 

  • Mehrotra S, Srivastava V, Rahman L, Kukreja LK (2013) Overexpression of a Catharanthus tryptophan decarboxylase (tdc) gene leads to enhanced terpenoid indole alkaloid (TIA) production in transgenic hairy root lines of Rauwolfia serpentina plant Cell. Tissue Organ Cult 115:377–384

    CAS  Google Scholar 

  • Mittler R et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309. https://doi.org/10.1016/j.tplants.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  • Muñoz P, Munné-Bosch S (2018) Photo-oxidative stress during leaf, flower and fruit development. Plant Physiol 176:1004–1014. https://doi.org/10.1104/pp.17.01127

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nahar K, Rahman M, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environ Sci Pollut Res 23(21):21206–21218. https://doi.org/10.1007/s11356-016-7295-8

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiol 140:411–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nasraoui-Hajaji A, Gharbi F, Ghorbel M, Gouia HC (2010) Cadmium stress effects on photosynthesis and PSII efficiency in tomato grown on NO3- or NH4 + as nitrogen source. Acta Bot Gallica 157:101–115

    CAS  Google Scholar 

  • Onsa G, Saari N, Selamat J, Bakar J (2004) Purification and characterization of membrane-bound peroxidases from Metroxylon sagu. Food Chem 85:365–376

    CAS  Google Scholar 

  • Park HC et al (2019) Functional characterisation of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress. Plant Biol 21:854–861. https://doi.org/10.1111/plb.12991

    Article  CAS  PubMed  Google Scholar 

  • Praveen N, Murthya HN (2012) Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Ind Crops Prod 35:241–243

    CAS  Google Scholar 

  • Quandt HJ, Pühler A, Broer I (1993) Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. MPMI 6:699–706

    Google Scholar 

  • Ray C, Beth F, Nathalie W, William KL, Christopher GK (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43(3):449–457

    Google Scholar 

  • Renfeng X et al (2017) Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. Plant Sci 260:1–7

    Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodríguez-Serrano M, Gómez M, del Río LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357. https://doi.org/10.1016/j.jplph.2006.06.018

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101

    CAS  PubMed  Google Scholar 

  • Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey K-M (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611

    PubMed  Google Scholar 

  • Sharma S, Dietz K (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    CAS  PubMed  Google Scholar 

  • Shenghu G, Jingdong W, Hongai M (2012) Inducement of hairy roots and establishment of culture sytem in Glycyrrhiza uralensis Fisch. Acta Agric Boreali Occidentalis Sin 157

  • Shubao H, Yao Y, Qiuhong C, Guangmao M, Zhenguo S, Luqing Z (2017) OsMYB45 plays an impportant role in rice resistance to cadmium stress. Plant Sci 264:1–8

    Google Scholar 

  • Singh H, Dixit S, Verma PC, Singh PK (2014) Evaluation of total phenolic compounds and insecticidal and antioxidant activities of tomato hairy root extract. J Agric Food Chem 62:2588–2594

    CAS  PubMed  Google Scholar 

  • Tamás L, Dudíková J, Ďurčeková K, Halušková Lu, Huttová J, Mistrík I, Ollé M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165(11):1193–1203. https://doi.org/10.1016/j.jplph.2007.08.013

    Article  CAS  PubMed  Google Scholar 

  • Thwe A, Arasu MV, Li X, Park CH, Kim SJ, Al-Dhabi NA, Park SU (2016) Effect of different Agrobacterium rhizogenes strains on hairy root induction and phenylpropanoid biosynthesis in tartary buckwheat (Fagopyrum tataricum Gaertn). Front Microbiol 7:318

    PubMed  PubMed Central  Google Scholar 

  • Vanhala L, Hiltunen R, Oksman-Caldentey K-M (1995) Virulence of different Argrobacterium strains on hairy root formation of Hyoscyamus muticus. Plant Cell Rep 14:236–240

    CAS  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2006) Transformation of agrobacterium using electroporation. CSH Protoc. https://doi.org/10.1101/pdb.prot4665

    Article  PubMed  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080. https://doi.org/10.1093/aob/mcq085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Liu X, Shen X, Zheng J (2006) Ri plasmid transformation of Glycyrrhiza uralensis and effects of some factors on growth of hairy roots. Zhongguo Zhong Yao Za Zhi 31:875–878

    PubMed  Google Scholar 

  • Yuce M, Taspinar MS, Aydin M, Agar G (2019) Response of NAC transcription factor genes against chromium stress in sunflower (Helianthus annuus L.) Plant Cell. Tissue and Organ Cult (PCTOC) 136:479–487. https://doi.org/10.1007/s11240-018-01529-8

    Article  CAS  Google Scholar 

  • Zeng S, Liu Y, Wu M, Liu X, Shen X, Liu C, Wang Y (2014) Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in lycium. PLoS ONE 9:e97039. https://doi.org/10.1371/journal.pone.0097039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Ye M (2009) Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J Chromatogr A 1216(11):1954–1969

    CAS  PubMed  Google Scholar 

  • Zhang HC, Liu JM, Lu HY, Gao SH (2009a) Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep 28:1205–1213

    CAS  PubMed  Google Scholar 

  • Zhang S, Zhang H, Qin R, Jiang W, Liu D (2009b) Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology 18:814–823. https://doi.org/10.1007/s10646-009-0324-3

    Article  CAS  PubMed  Google Scholar 

  • Zhang N et al (2014) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50

    CAS  PubMed  Google Scholar 

  • Zhao F, McGrath S, Crosland A (1994) Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy. Commun Soil Sci Plant Anal 25:407–418. https://doi.org/10.1080/00103629409369047

    Article  CAS  Google Scholar 

  • Zheng G, Lv H, Gao S, Wang S (2010a) Effects of cadmium on growth and antioxidant responses in Glycyrrhiza uralensis seedlings. Plant Soil Environ 56:508–515

    CAS  Google Scholar 

  • Zheng G, Lv HP, Gao S, Wang SR (2010b) Effects of cadmium on growth and antioxidant responses in Glycyrrhiza uralensis seedlings. Plant Soil Environ 56:508–515

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (31470391 and 31770334), Youth Innovation Promotion Association, CAS (2015286) and the Scientific Project of Ningxia Agriculture Comprehensive Development (znnfkj2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zubaida Yousaf, Shaohua Zeng or Wang Ying.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Manoj Prasad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahel, A.A., Yousaf, Z., Zeng, S. et al. Growth and physiological alterations related to root-specific gene function of LrERF061-OE in Glycyrrhiza uralensis Fisch. hairy root clones under cadmium stress. Plant Cell Tiss Organ Cult 140, 115–127 (2020). https://doi.org/10.1007/s11240-019-01715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01715-2

Keywords

Navigation